在线持续学习(OCL)旨在通过单个通过数据从非平稳数据流进行逐步训练神经网络。基于彩排的方法试图用少量的内存近似观察到的输入分布,并以后重新审视它们以避免忘记。尽管具有强烈的经验表现,但排练方法仍然遭受了过去数据损失景观和记忆样本的差异。本文重新讨论了在线设置中的排练动态。我们从偏见和动态的经验风险最小化的角度从固有的内存过度拟合风险中提供了理论见解,并检查重复排练的优点和限制。受我们的分析的启发,一个简单而直观的基线,重复的增强彩排(RAR)旨在解决在线彩排的拟合不足的困境。令人惊讶的是,在四个相当不同的OCL基准测试中,这种简单的基线表现优于香草排练9%-17%,并且显着改善了基于最新的彩排方法miR,ASER和SCR。我们还证明,RAR成功地实现了过去数据的损失格局和其学习轨迹中的高损失山脊厌恶的准确近似。进行了广泛的消融研究,以研究重复和增强彩排和增强学习(RL)之间的相互作用(RL),以动态调整RAR的超参数以平衡在线稳定性 - 塑性权衡折衷。
translated by 谷歌翻译
Lack of performance when it comes to continual learning over non-stationary distributions of data remains a major challenge in scaling neural network learning to more human realistic settings. In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples. We then propose a new algorithm, Meta-Experience Replay (MER), that directly exploits this view by combining experience replay with optimization based meta-learning. This method learns parameters that make interference based on future gradients less likely and transfer based on future gradients more likely. 1 We conduct experiments across continual lifelong supervised learning benchmarks and non-stationary reinforcement learning environments demonstrating that our approach consistently outperforms recently proposed baselines for continual learning. Our experiments show that the gap between the performance of MER and baseline algorithms grows both as the environment gets more non-stationary and as the fraction of the total experiences stored gets smaller.
translated by 谷歌翻译
持续学习(CL)旨在开发单一模型适应越来越多的任务的技术,从而潜在地利用跨任务的学习以资源有效的方式。 CL系统的主要挑战是灾难性的遗忘,在学习新任务时忘记了早期的任务。为了解决此问题,基于重播的CL方法在遇到遇到任务中选择的小缓冲区中维护和重复培训。我们提出梯度Coreset重放(GCR),一种新颖的重播缓冲区选择和使用仔细设计的优化标准的更新策略。具体而言,我们选择并维护一个“Coreset”,其与迄今为止关于当前模型参数的所有数据的梯度紧密近似,并讨论其有效应用于持续学习设置所需的关键策略。在学习的离线持续学习环境中,我们在最先进的最先进的最先进的持续学习环境中表现出显着的收益(2%-4%)。我们的调查结果还有效地转移到在线/流媒体CL设置,从而显示现有方法的5%。最后,我们展示了持续学习的监督对比损失的价值,当与我们的子集选择策略相结合时,累计增益高达5%。
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
我们探索无任务持续学习(CL),其中培训模型以避免在没有明确的任务边界或身份的情况下造成灾难性的遗忘。在无任务CL上的许多努力中,一个值得注意的方法是基于内存的,存储和重放训练示例的子集。然而,由于CL模型不断更新,所以存储的示例的效用可以随时间缩短。这里,我们提出基于梯度的存储器编辑(GMED),该框架是通过梯度更新在连续输入空间中编辑存储的示例的框架,以便为重放创建更多的“具有挑战性”示例。 GMED编辑的例子仍然类似于其未编辑的形式,但可以在即将到来的模型更新中产生增加的损失,从而使未来的重播在克服灾难性遗忘方面更有效。通过施工,GMED可以与其他基于内存的CL算法一起无缝应用,以进一步改进。实验验证了GMED的有效性,以及我们最好的方法显着优于基线和以前的五个数据集中的最先进。可以在https://github.com/ink-usc/gmed找到代码。
translated by 谷歌翻译
人类智慧的主食是以不断的方式获取知识的能力。在Stark对比度下,深网络忘记灾难性,而且为此原因,类增量连续学习促进方法的子字段逐步学习一系列任务,将顺序获得的知识混合成综合预测。这项工作旨在评估和克服我们以前提案黑暗体验重播(Der)的陷阱,这是一种简单有效的方法,将排练和知识蒸馏结合在一起。灵感来自于我们的思想不断重写过去的回忆和对未来的期望,我们赋予了我的能力,即我的能力来修改其重播记忆,以欢迎有关过去数据II的新信息II)为学习尚未公开的课程铺平了道路。我们表明,这些策略的应用导致了显着的改进;实际上,得到的方法 - 被称为扩展-DAR(X-DER) - 优于标准基准(如CiFar-100和MiniimAgeNet)的技术状态,并且这里引入了一个新颖的。为了更好地了解,我们进一步提供了广泛的消融研究,以证实并扩展了我们以前研究的结果(例如,在持续学习设置中知识蒸馏和漂流最小值的价值)。
translated by 谷歌翻译
在线持续学习,尤其是在任务身份和任务边界不可用时,是一个挑战性的持续学习设置。一种代表性的在线持续学习方法是基于重播的方法,其中保留称为内存的重播缓冲区,以保留过去样本的一小部分,以克服灾难性的遗忘。当通过在线持续学习来解决时,大多数现有的基于重播的方法都集中在单标签问题上,其中数据流中的每个样本只有一个标签。但是,在在线持续学习环境中,多标签问题也可能发生,在线持续学习环境中,每个样本可能具有多个标签。在使用多标签样本的在线设置中,数据流中的类分布通常是高度不平衡的,并且在内存中控制类别的分配是一项挑战课程。但是,内存中的课程分布对于基于重播的内存至关重要,以获得良好的性能,尤其是当数据流中的类分布高度不平衡时。在本文中,我们提出了一种简单但有效的方法,称为多标签在线持续学习,称为内存中的班级分布(OCDM)。 OCDM将内存更新机制制定为优化问题,并通过解决此问题来更新内存。在两个广泛使用的多标签数据集上的实验表明,OCDM可以很好地控制内存中的类分布,并且可以胜过其他最先进的方法。
translated by 谷歌翻译
Continual Learning (CL) is an emerging machine learning paradigm that aims to learn from a continuous stream of tasks without forgetting knowledge learned from the previous tasks. To avoid performance decrease caused by forgetting, prior studies exploit episodic memory (EM), which stores a subset of the past observed samples while learning from new non-i.i.d. data. Despite the promising results, since CL is often assumed to execute on mobile or IoT devices, the EM size is bounded by the small hardware memory capacity and makes it infeasible to meet the accuracy requirements for real-world applications. Specifically, all prior CL methods discard samples overflowed from the EM and can never retrieve them back for subsequent training steps, incurring loss of information that would exacerbate catastrophic forgetting. We explore a novel hierarchical EM management strategy to address the forgetting issue. In particular, in mobile and IoT devices, real-time data can be stored not just in high-speed RAMs but in internal storage devices as well, which offer significantly larger capacity than the RAMs. Based on this insight, we propose to exploit the abundant storage to preserve past experiences and alleviate the forgetting by allowing CL to efficiently migrate samples between memory and storage without being interfered by the slow access speed of the storage. We call it Carousel Memory (CarM). As CarM is complementary to existing CL methods, we conduct extensive evaluations of our method with seven popular CL methods and show that CarM significantly improves the accuracy of the methods across different settings by large margins in final average accuracy (up to 28.4%) while retaining the same training efficiency.
translated by 谷歌翻译
根据互补学习系统(CLS)理论〜\ cite {mcclelland1995there}在神经科学中,人类通过两个补充系统有效\ emph {持续学习}:一种快速学习系统,以海马为中心,用于海马,以快速学习细节,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验,个人体验的快速学习, ;以及位于新皮层中的缓慢学习系统,以逐步获取有关环境的结构化知识。在该理论的激励下,我们提出\ emph {dualnets}(对于双网络),这是一个一般的持续学习框架,该框架包括一个快速学习系统,用于监督从特定任务和慢速学习系统中的模式分离代表学习,用于表示任务的慢学习系统 - 不可知论的一般代表通过自我监督学习(SSL)。双网符可以无缝地将两种表示类型纳入整体框架中,以促进在深层神经网络中更好地持续学习。通过广泛的实验,我们在各种持续的学习协议上展示了双网络的有希望的结果,从标准离线,任务感知设置到具有挑战性的在线,无任务的场景。值得注意的是,在Ctrl〜 \ Cite {veniat2020202020202020202020202020202020202020202020202020202020202021- coite {ostapenko2021-continual}的基准中。此外,我们进行了全面的消融研究,以验证双nets功效,鲁棒性和可伸缩性。代码可在\ url {https://github.com/phquang/dualnet}上公开获得。
translated by 谷歌翻译
一组复杂的机制促进了大脑中的持续学习(CL)。这包括用于整合信息的多个内存系统的相互作用,如互补学习系统(CLS)理论和突触巩固,以保护获得的知识免受擦除。因此,我们提出了一种通用CL方法,该方法在突触巩固和双重记忆体验重播(Synergy)之间产生协同作用。我们的方法保持语义记忆,该记忆积累并巩固了整个任务中的信息,并与情节内存进行交互以有效重播。它通过跟踪训练轨迹期间参数的重要性并将其固定在语义内存中的巩固参数中,进一步采用了突触巩固。据我们所知,我们的研究是第一个与突触合并一起使用双重记忆体验重播的,该合并适用于一般CL,网络在培训或推理过程中不利用任务边界或任务标签。我们对各种具有挑战性的CL情景和特征分析的评估表明,将突触巩固和CLS理论纳入启用DNN中的有效CL的功效。
translated by 谷歌翻译
持续学习需要模型来学习新任务,同时保持先前学识到的知识。已经提出了各种算法来解决这一真正的挑战。到目前为止,基于排练的方法,例如经验重播,取得了最先进的性能。这些方法将过去任务的一小部分保存为内存缓冲区,以防止模型忘记以前学识的知识。但是,它们中的大多数情况都同样对待每一个新任务,即,在学习不同的新任务时修复了框架的超级参数。这样的设置缺乏对过去和新任务之间的关系/相似性的考虑。例如,与从公共汽车中学到的人相比,从狗的知识/特征比识别猫(新任务)更有益。在这方面,我们提出了一种基于BI级优化的元学习算法,以便自适应地调整从过去和新任务中提取的知识之间的关系。因此,该模型可以在持续学习期间找到适当的梯度方向,避免在内存缓冲区上的严重过度拟合问题。广泛的实验是在三个公开的数据集(即CiFar-10,CiFar-100和微小想象网)上进行的。实验结果表明,该方法可以一致地改善所有基线的性能。
translated by 谷歌翻译
持续学习的现有工作(CL)的重点是减轻灾难性遗忘,即学习新任务时过去任务的模型绩效恶化。但是,CL系统的训练效率不足,这限制了CL系统在资源有限的方案下的现实应用。在这项工作中,我们提出了一个名为“稀疏持续学习”(SPARCL)的新颖框架,这是第一个利用稀疏性以使边缘设备上具有成本效益的持续学习的研究。 SPARCL通过三个方面的协同作用来实现训练加速度和准确性保护:体重稀疏性,数据效率和梯度稀疏性。具体而言,我们建议在整个CL过程中学习一个稀疏网络,动态数据删除(DDR),以删除信息较少的培训数据和动态梯度掩盖(DGM),以稀疏梯度更新。他们每个人不仅提高了效率,而且进一步减轻了灾难性的遗忘。 SPARCL始终提高现有最新CL方法(SOTA)CL方法的训练效率最多减少了训练失败,而且令人惊讶的是,SOTA的准确性最多最多提高了1.7%。 SPARCL还优于通过将SOTA稀疏训练方法适应CL设置的效率和准确性获得的竞争基线。我们还评估了SPARCL在真实手机上的有效性,进一步表明了我们方法的实际潜力。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
持续学习(CL)旨在制定模仿人类能力顺序学习新任务的能力,同时能够保留从过去经验获得的知识。在本文中,我们介绍了内存约束在线连续学习(MC-OCL)的新问题,这对存储器开销对可能算法可以用于避免灾难性遗忘的记忆开销。最多,如果不是全部,之前的CL方法违反了这些约束,我们向MC-OCL提出了一种算法解决方案:批量蒸馏(BLD),基于正则化的CL方法,有效地平衡了稳定性和可塑性,以便学习数据流,同时保留通过蒸馏解决旧任务的能力。我们在三个公开的基准测试中进行了广泛的实验评估,经验证明我们的方法成功地解决了MC-OCL问题,并实现了需要更高内存开销的先前蒸馏方法的可比准确性。
translated by 谷歌翻译
Many real-world learning scenarios face the challenge of slow concept drift, where data distributions change gradually over time. In this setting, we pose the problem of learning temporally sensitive importance weights for training data, in order to optimize predictive accuracy. We propose a class of temporal reweighting functions that can capture multiple timescales of change in the data, as well as instance-specific characteristics. We formulate a bi-level optimization criterion, and an associated meta-learning algorithm, by which these weights can be learned. In particular, our formulation trains an auxiliary network to output weights as a function of training instances, thereby compactly representing the instance weights. We validate our temporal reweighting scheme on a large real-world dataset of 39M images spread over a 9 year period. Our extensive experiments demonstrate the necessity of instance-based temporal reweighting in the dataset, and achieve significant improvements to classical batch-learning approaches. Further, our proposal easily generalizes to a streaming setting and shows significant gains compared to recent continual learning methods.
translated by 谷歌翻译
我们使用缺少标签来研究在线持续学习,并提出Semicon,这是一种针对部分标记数据设计的新对比损失。我们通过设计一种基于内存的方法在未标记的数据流中训练的基于内存的方法来证明其效率,在该方法中,使用Oracle添加到内存中的每个数据都标记为记忆。当很少的标签可用时,我们的方法优于现有的半监督方法,并且获得与最先进的监督方法相似的结果,而在拆分cifar10上仅使用2.6%的标签,而在split-cifar100上仅使用标签的10%。
translated by 谷歌翻译
持续学习研究的主要重点领域是通过设计新算法对分布变化更强大的新算法来减轻神经网络中的“灾难性遗忘”问题。尽管持续学习文献的最新进展令人鼓舞,但我们对神经网络的特性有助于灾难性遗忘的理解仍然有限。为了解决这个问题,我们不关注持续的学习算法,而是在这项工作中专注于模型本身,并研究神经网络体系结构对灾难性遗忘的“宽度”的影响,并表明宽度在遗忘遗产方面具有出人意料的显着影响。为了解释这种效果,我们从各个角度研究网络的学习动力学,例如梯度正交性,稀疏性和懒惰的培训制度。我们提供了与不同架构和持续学习基准之间的经验结果一致的潜在解释。
translated by 谷歌翻译
当自我监督的模型已经显示出比在规模上未标记的数据训练的情况下的监督对方的可比视觉表现。然而,它们的功效在持续的学习(CL)场景中灾难性地减少,其中数据被顺序地向模型呈现给模型。在本文中,我们表明,通过添加将表示的当前状态映射到其过去状态,可以通过添加预测的网络来无缝地转换为CL的蒸馏机制。这使我们能够制定一个持续自我监督的视觉表示的框架,学习(i)显着提高了学习象征的质量,(ii)与若干最先进的自我监督目标兼容(III)几乎没有近似参数调整。我们通过在各种CL设置中培训六种受欢迎的自我监督模型来证明我们的方法的有效性。
translated by 谷歌翻译
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one, under the constraints of having limited system size and computational cost, in which the main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones. With the specific focus on the class-incremental OCL scenario, i.e. OCL for classification, the recent advance incorporates the contrastive learning technique for learning more generalised feature representation to achieve the state-of-the-art performance but is still unable to fully resolve the catastrophic forgetting. In this paper, we follow the strategy of adopting contrastive learning but further introduce the semantically distinct augmentation technique, in which it leverages strong augmentation to generate more data samples, and we show that considering these samples semantically different from their original classes (thus being related to the out-of-distribution samples) in the contrastive learning mechanism contributes to alleviate forgetting and facilitate model stability. Moreover, in addition to contrastive learning, the typical classification mechanism and objective (i.e. softmax classifier and cross-entropy loss) are included in our model design for faster convergence and utilising the label information, but particularly equipped with a sampling strategy to tackle the tendency of favouring the new classes (i.e. model bias towards the recently learnt classes). Upon conducting extensive experiments on CIFAR-10, CIFAR-100, and Mini-Imagenet datasets, our proposed method is shown to achieve superior performance against various baselines.
translated by 谷歌翻译