我们通过随时间变化的因素负载开发了受惩罚的两次通用回归。第一遍中的惩罚对时间变化驱动因素强加了稀疏性,同时还通过正规化适当的系数组来维持与无契约限制的兼容性。第二次通过提供了风险溢价估计,以预测股权超额回报。我们的蒙特卡洛结果以及我们对大量横断面数据集的个人股票集的经验结果表明,如果不进行分组的惩罚可能会屈服于几乎所有估计的时变模型,违反了无标准限制。此外,我们的结果表明,与惩罚方法相比,所提出的方法在没有适当分组或时间不变的因子模型的情况下减少了预测错误。
translated by 谷歌翻译
In a high dimensional linear predictive regression where the number of potential predictors can be larger than the sample size, we consider using LASSO, a popular L1-penalized regression method, to estimate the sparse coefficients when many unit root regressors are present. Consistency of LASSO relies on two building blocks: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix of the regressors. In our setting where unit root regressors are driven by temporal dependent non-Gaussian innovations, we establish original probabilistic bounds for these two building blocks. The bounds imply that the rates of convergence of LASSO are different from those in the familiar cross sectional case. In practical applications given a mixture of stationary and nonstationary predictors, asymptotic guarantee of LASSO is preserved if all predictors are scale-standardized. In an empirical example of forecasting the unemployment rate with many macroeconomic time series, strong performance is delivered by LASSO when the initial specification is guided by macroeconomic domain expertise.
translated by 谷歌翻译
在本文中,我们考虑了使用相同的预测精度测试程序在横截面依赖下实现了实现波动率测量的预测评估。在预测实现挥发性时,我们根据增强横截面评估模型的预测精度。在相等预测精度的零假设下,所采用的基准模型是标准的HAR模型,而在非相同的预测精度的替代方案下,预测模型是通过套索缩收估计的增强的HAR模型。我们通过结合测量误差校正以及横截面跳转分量测量来研究预报对模型规范的敏感性。使用数值实现评估模型的样本外预测评估。
translated by 谷歌翻译
在本文中,我们将深度学习文献与非线性因素模型联系起来,并表明深度学习估计可以大大改善非线性加性因子模型文献。我们通过扩展Schmidt-Hieber(2020)定理来提供预期风险的界限,并表明这些上限在一组多个响应变量上是均匀的。我们表明,我们的风险界限并不取决于因素的数量。为了构建资产回报的协方差矩阵估计器,我们开发了深层神经网络中误差协方差矩阵的新型数据依赖性估计器。估算器是指灵活的自适应阈值技术,对创新中的异常值很强。我们证明估计量在光谱规范中是一致的。然后使用该结果,我们显示了协方差矩阵的一致性和收敛速率和资产回报的精确矩阵估计器。两种结果中的收敛速度并不取决于因素的数量,因此我们的收敛性是因子模型文献中的一个新结果,因为这一事实是因素的数量妨碍了更好的估计和预测。除了精确矩阵结果外,即使资产数量大于时间跨度,我们也可以获得我们所有的结果,并且两个数量都在增长。各种蒙特卡洛模拟证实了我们的大型样本发现,并揭示了DNN-FM的卓越精确度,以估计连接因子和可观察变量的真实潜在功能形式,以及与竞争方法相比的协方差和精确矩阵。此外,在大多数情况下,就样本外投资组合策略而言,在样本外预测应用程序中,就样本外投资组合标准偏差和Sharpe比率而言,它的表现优于其他投资组合策略。
translated by 谷歌翻译
不同的代理需要进行预测。他们观察到相同的数据,但有不同的模型:他们预测使用不同的解释变量。我们研究哪个代理商认为它们具有最佳的预测能力 - 通过最小的主观后均匀平均平方预测误差来衡量 - 并且显示它如何取决于样本大小。使用小样品,我们呈现结果表明它是使用低维模型的代理。对于大型样品,通常是具有高维模型的代理,可能包括无关的变量,但从未排除相关的变量。我们将结果应用于拍卖生产资产拍卖中的获胜模型,以争辩于企业家和具有简单模型的投资者将在新部门过度代表,并了解解释横断面变异的“因素”的扩散资产定价文学中的预期股票回报。
translated by 谷歌翻译
本文介绍了用于在不同频率下采样的重尾依赖面板数据的结构化机器学习回归。我们专注于稀疏组的套索正规化。这种类型的正则化可以利用混合频率序列面板数据结构并提高估计的质量。我们获得了汇集和固定效果的Oracle不等式稀疏组套索面板数据估算器认识到财务和经济数据可能具有脂肪尾。为此,我们利用了由盗版$ \ Tai $ -Mixing流程组成的面板数据的新Fuk-Nagaev集中不等式。
translated by 谷歌翻译
我们考虑一个高维模型,其中观察到时间和空间的变量。该模型由包含时间滞后的时空回归和因变量的空间滞后组成。与古典空间自回归模型不同,我们不依赖于预定的空间交互矩阵,但从数据中推断所有空间交互。假设稀疏性,我们通过惩罚一组Yule-Walker方程来估计完全数据驱动的空间和时间依赖。这种正则化可以留下非结构化,但我们还提出了当观察结果源自空间网格(例如卫星图像)时定制的收缩程序。推导有限的样本误差界限,并且在渐近框架中建立估计一致性,其中样本大小和空间单元的数量共同偏离。外源性变量也可以包括在内。与竞争程序相比,仿真练习表现出强大的有限样本性能。作为一个实证应用,我们模型卫星测量了伦敦的No2浓度。我们的方法通过竞争力的基准提供预测,我们发现了强烈的空间互动的证据。
translated by 谷歌翻译
本文提出了一种新的高维金融数据算法 - 该群体可解释基础选择(GIB)算法,以估计最近开发的广义套利定价理论暗示的新的自适应多因素(AMF)资产定价模型,它放松了风险因素的数量小的惯例。我们首先使用高维方法获得基础资产的自适应基础资产集合,然后同时测试该基础资产对应哪种证券。AMF模型以及GIBS算法显示出比FAMA-French 5因素模型具有明显更好的拟合和预测能力。
translated by 谷歌翻译
考虑一个面板数据设置,其中可获得对个人的重复观察。通常可以合理地假设存在共享观察特征的类似效果的个体组,但是分组通常提前未知。我们提出了一种新颖的方法来估计普通面板数据模型的这种未观察到的分组。我们的方法明确地估计各个参数估计中的不确定性,并且在每个人上具有大量的个体和/或重复测量的计算可行。即使在单个数据不可用的情况下,也可以应用开发的想法,并且仅向研究人员提供参数估计与某种量化的不确定性。
translated by 谷歌翻译
了解特定待遇或政策与许多感兴趣领域有关的影响,从政治经济学,营销到医疗保健。在本文中,我们开发了一种非参数算法,用于在合成控制的背景下检测随着时间的流逝的治疗作用。该方法基于许多算法的反事实预测,而不必假设该算法正确捕获模型。我们介绍了一种推论程序来检测治疗效果,并表明测试程序对于固定,β混合过程渐近有效,而无需对所考虑的一组基础算法施加任何限制。我们讨论了平均治疗效果估计的一致性保证,并为提出的方法提供了遗憾的界限。算法类别可能包括随机森林,套索或任何其他机器学习估计器。数值研究和应用说明了该方法的优势。
translated by 谷歌翻译
This paper provides estimation and inference methods for a conditional average treatment effects (CATE) characterized by a high-dimensional parameter in both homogeneous cross-sectional and unit-heterogeneous dynamic panel data settings. In our leading example, we model CATE by interacting the base treatment variable with explanatory variables. The first step of our procedure is orthogonalization, where we partial out the controls and unit effects from the outcome and the base treatment and take the cross-fitted residuals. This step uses a novel generic cross-fitting method we design for weakly dependent time series and panel data. This method "leaves out the neighbors" when fitting nuisance components, and we theoretically power it by using Strassen's coupling. As a result, we can rely on any modern machine learning method in the first step, provided it learns the residuals well enough. Second, we construct an orthogonal (or residual) learner of CATE -- the Lasso CATE -- that regresses the outcome residual on the vector of interactions of the residualized treatment with explanatory variables. If the complexity of CATE function is simpler than that of the first-stage regression, the orthogonal learner converges faster than the single-stage regression-based learner. Third, we perform simultaneous inference on parameters of the CATE function using debiasing. We also can use ordinary least squares in the last two steps when CATE is low-dimensional. In heterogeneous panel data settings, we model the unobserved unit heterogeneity as a weakly sparse deviation from Mundlak (1978)'s model of correlated unit effects as a linear function of time-invariant covariates and make use of L1-penalization to estimate these models. We demonstrate our methods by estimating price elasticities of groceries based on scanner data. We note that our results are new even for the cross-sectional (i.i.d) case.
translated by 谷歌翻译
当我们对优化模型中的不确定参数进行观察以及对协变量的同时观察时,我们研究了数据驱动决策的优化。鉴于新的协变量观察,目标是选择一个决定以此观察为条件的预期成本的决定。我们研究了三个数据驱动的框架,这些框架将机器学习预测模型集成在随机编程样本平均值近似(SAA)中,以近似解决该问题的解决方案。 SAA框架中的两个是新的,并使用了场景生成的剩余预测模型的样本外残差。我们研究的框架是灵活的,并且可以容纳参数,非参数和半参数回归技术。我们在数据生成过程,预测模型和随机程序中得出条件,在这些程序下,这些数据驱动的SaaS的解决方案是一致且渐近最佳的,并且还得出了收敛速率和有限的样本保证。计算实验验证了我们的理论结果,证明了我们数据驱动的公式比现有方法的潜在优势(即使预测模型被误解了),并说明了我们在有限的数据制度中新的数据驱动配方的好处。
translated by 谷歌翻译
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice. They perform poorly out of sample due to estimation error, they experience extreme weights together with high sensitivity to change in input parameters. The heavy-tail characteristics of financial time series are in fact the cause for these erratic fluctuations of weights that consequently create substantial transaction costs. In robustifying the weights we present a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios. Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and inversion of the covariance operator as a whole and concentrate on robust estimation of the gradient descent increment. Using modern tools of robust statistics we construct a computationally efficient estimator with almost Gaussian properties based on median-of-means uniformly over weights. This robustified Markowitz approach is confirmed by empirical studies on equity markets. We demonstrate that robustified portfolios reach the lowest turnover compared to shrinkage-based and constrained portfolios while preserving or slightly improving out-of-sample performance.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
在监督参数模型的背景下,我们介绍了电子价值的概念。电子价值是标量数量,代表了以在所有功能(即完整模型)训练的模型的子集中训练的模型中训练的模型中参数估计值的接近性。在一般条件下,电子价值的等级排序将包含所有基本特征的模型与不具有的模型分开。电子价值适用于广泛的参数模型。我们使用数据深度和基于快速重采样的算法来使用电子价值实现特征选择过程,从而提供一致性结果。对于$ p $维的功能空间,与传统的拟合和评估$ 2^p $型号相反,此过程仅适用完整型号并评估$ P+1 $型号。通过在几个模型设置以及合成和真实数据集的实验中,我们确定电子价值方法是现有特定于特定模型特征选择方法的有希望的一般替代方法。
translated by 谷歌翻译
我们使用深层部分最小二乘(DPL)来估算单个股票收益的资产定价模型,该模型以灵活而动态的方式利用调理信息,同时将超额回报归因于一小部分统计风险因素。新颖的贡献是解决非线性因子结构,从而推进经验资产定价中深度学习的当前范式,该定价在假设高斯资产回报和因素的假设下使用线性随机折现因子。通过使用预测的最小二乘正方形来共同投影公司特征和资产回报到潜在因素的子空间,并使用深度学习从因子负载到资产回报中学习非线性图。捕获这种非线性风险因素结构的结果是通过线性风险因素暴露和相互作用效应来表征资产回报中的异常情况。因此,深度学习捕获异常值的众所周知的能力,在潜在因素结构中的角色和高阶项在因素风险溢价上的作用。从经验方面来说,我们实施了DPLS因子模型,并表现出比Lasso和Plain Vanilla深度学习模型表现出卓越的性能。此外,由于DPL的更简约的架构,我们的网络培训时间大大减少了。具体而言,在1989年12月至2018年1月的一段时间内使用Russell 1000指数中的3290资产,我们评估了我们的DPLS因子模型,并生成比深度学习大约1.2倍的信息比率。 DPLS解释了变化和定价错误,并确定了最突出的潜在因素和公司特征。
translated by 谷歌翻译
在本文中,我们研究了在一组单位上进行的设计实验的问题,例如在线市场中的用户或用户组,以多个时间段,例如数周或数月。这些实验特别有助于研究对当前和未来结果具有因果影响的治疗(瞬时和滞后的影响)。设计问题涉及在实验之前或期间选择每个单元的治疗时间,以便最精确地估计瞬间和滞后的效果,实验后。这种治疗决策的优化可以通过降低其样本尺寸要求,直接最小化实验的机会成本。优化是我们提供近最优解的NP-Hard整数程序,当时在开始时进行设计决策(固定样本大小设计)。接下来,我们研究允许在实验期间进行适应性决策的顺序实验,并且还可能早期停止实验,进一步降低其成本。然而,这些实验的顺序性质使设计阶段和估计阶段复杂化。我们提出了一种新的算法,PGAE,通过自适应地制造治疗决策,估算治疗效果和绘制有效的实验后推理来解决这些挑战。 PGAE将来自贝叶斯统计,动态编程和样品分裂的思想结合起来。使用来自多个域的真实数据集的合成实验,我们证明了与基准相比,我们的固定样本尺寸和顺序实验的提出解决方案将实验的机会成本降低了50%和70%。
translated by 谷歌翻译
我们讨论了具有未知IV有效性的线性仪器变量(IV)模型中识别的基本问题。我们重新审视了流行的多数和多元化规则,并表明通常没有识别条件是“且仅在总体上”。假设“最稀少的规则”,该规则等同于多数规则,但在计算算法中变得运作,我们研究并证明了基于两步选择的其他IV估计器的非convex惩罚方法的优势,就两步选择而言选择一致性和单独弱IV的适应性。此外,我们提出了一种与识别条件保持一致的替代较低的惩罚,并同时提供甲骨文稀疏结构。与先前的文献相比,针对静脉强度较弱的估计仪得出了理想的理论特性。使用模拟证明了有限样本特性,并且选择和估计方法应用于有关贸易对经济增长的影响的经验研究。
translated by 谷歌翻译
最佳定价,即确定最大限度地提高给定产品的利润或收入的价格水平,是零售业的重要任务。要选择这样的数量,请先估计产品需求的价格弹性。由于混淆效果和价格内限性,回归方法通常无法恢复这些弹性。因此,通常需要随机实验。然而,例如,弹性可以是高度异构的,这取决于商店的位置。随着随机化经常发生在市级,标准差异差异方法也可能失败。可能的解决方案是基于根据从人工对照构成的治疗方法测量处理对单个(或仅几个)处理单元的影响的方法。例如,对于治疗组中的每个城市,可以从未处理的位置构成反事实。在本文中,我们应用了一种新的高维统计方法,以衡量价格变化对巴西主要零售商的日常销售的影响。所提出的方法结合了主成分(因子)和稀疏回归,导致一种称为因子调整的正规化方法的方法(\ TextTt {FarmTraTeat})。数据包括每日五种不同产品的日常销售和价格,超过400多名市。审议的产品属于\ emph {甜蜜和糖果}类别和实验已经在2016年和2017年进行。我们的结果证实了高度异质性的假设,从而产生了与独特的市政当局的不同定价策略。
translated by 谷歌翻译
We introduce an ensemble learning method based on Gaussian Process Regression (GPR) for predicting conditional expected stock returns given stock-level and macro-economic information. Our ensemble learning approach significantly reduces the computational complexity inherent in GPR inference and lends itself to general online learning tasks. We conduct an empirical analysis on a large cross-section of US stocks from 1962 to 2016. We find that our method dominates existing machine learning models statistically and economically in terms of out-of-sample $R$-squared and Sharpe ratio of prediction-sorted portfolios. Exploiting the Bayesian nature of GPR, we introduce the mean-variance optimal portfolio with respect to the predictive uncertainty distribution of the expected stock returns. It appeals to an uncertainty averse investor and significantly dominates the equal- and value-weighted prediction-sorted portfolios, which outperform the S&P 500.
translated by 谷歌翻译