使用人工智能算法对连续,非侵入性,无齿状血压(BP)测量进行了广泛的研究。这种方法涉及从ECG,PPG,ICG,BCG等生理信号中提取某些特征作为独立变量,并从动脉血压(ABP)信号中提取特征作为依赖变量,然后使用机器学习算法来开发血压估计基于这些数据的模型。该领域的最大挑战是估计模型的准确性不足。本文提出了一种具有聚类步骤的新型血压估计方法,用于精度改善。所提出的方法涉及从心电图(ECG)和光电读数(PPG)信号中提取脉冲传输时间(PPG),PPG强度比(PIR)和心率(HR)特征作为聚类和回归的输入,提取收缩压( SBP)和舒张压(DBP)来自ABP信号的特征作为依赖变量,最后通过应用梯度升压回归(GBR),随机森林回归(RFR)和每个群集的多层的Perceptron回归(MLP)开发回归模型。使用MIMICII数据集来实现该方法,其中用于确定最佳数量的簇的轮廓标准。结果表明,由于采用群集算法,然后在每个簇上开发回归模型,并且最终加权平均可以显着提高,因此可以显着改善精度。结果基于每个群集的错误。当用5个集群和GBR实施时,该方法产生了2.56的MAE,对于SBP估计,2.23对于DBP估计,这显着优于没有聚类的最佳结果(DBP:6.27,SBP:6.36)。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
血压(BP)是心血管疾病和中风最有影响力的生物标志物之一;因此,需要定期监测以诊断和预防医疗并发症的任何出现。目前携带的携带BP监测的无齿状方法,虽然是非侵入性和不引人注目的,涉及围绕指尖光肌谱(PPG)信号的显式特征工程。为了规避这一点,我们提出了一种端到端的深度学习解决方案,BP-Net,它使用PPG波形来估计通过中间连续动脉BP来估计收缩压BP(SBP),平均压力(MAP)和舒张压BP(DBP) (ABP)波形。根据英国高血压协会(BHS)标准的条款,BP-Net为SBP估计实现了DBP和地图估计和B级的A级。 BP-Net还满足了医疗仪器(AAMI)标准的推进和地图估计,分别实现了5.16mmHg和2.89mmHg的平均误差(MAE),分别用于SBP和DBP。此外,我们通过在Raspberry PI 4设备上部署BP-Net来建立我们的方法的无处不在的潜力,并为我们的模型实现4.25毫秒的推理时间来将PPG波形转换为ABP波形。
translated by 谷歌翻译
目的:本文侧重于开发鲁棒和准确的加工解决方案,用于连续和较低的血压(BP)监测。在这方面,提出了一种基于深入的基于深度学习的框架,用于计算收缩和舒张BP上的低延迟,连续和无校准的上限和下界。方法:称为BP-Net,所提出的框架是一种新型卷积架构,可提供更长的有效内存,同时实现偶然拨号卷积和残留连接的卓越性能。利用深度学习的实际潜力在提取内在特征(深度特征)并增强长期稳健性,BP-Net使用原始的心电图(ECG)和光电觉体图(PPG)信号而无需提取任何形式的手工制作功能在现有解决方案中很常见。结果:通过利用最近文献中使用的数据集未统一和正确定义的事实,基准数据集由来自PhysoioNet获得的模拟I和MIMIC-III数据库构建。所提出的BP-Net是基于该基准数据集进行评估,展示了有希望的性能并显示出优异的普遍能力。结论:提出的BP-NET架构比规范复发网络更准确,增强了BP估计任务的长期鲁棒性。意义:建议的BP-NET架构解决了现有的BP估计解决方案的关键缺点,即,严重依赖于提取手工制作的特征,例如脉冲到达时间(PAT),以及;缺乏稳健性。最后,构造的BP-Net DataSet提供了一个统一的基础,用于评估和比较基于深度学习的BP估计算法。
translated by 谷歌翻译
心血管疾病是死亡率最严重的原因之一,每年在世界各地遭受沉重的生命。对血压的持续监测似乎是最可行的选择,但这需要一个侵入性的过程,带来了几层复杂性。这激发了我们开发一种通过使用光杀解功能图(PPG)信号的非侵入性方法来预测连续动脉血压(ABP)波形的方法。此外,我们探索了深度学习的优势,因为它可以通过使手工制作的功能计算无关紧要,这将使我们无法坚持理想形状的PPG信号,这是现有方法的缺点。因此,我们提出了一种基于深度学习的方法PPG2ABP,该方法可以从输入PPG信号中预测连续的ABP波形,平均绝对误差为4.604 mmHg,可保留一致的形状,大小和相位。但是,PPG2ABP的更惊人的成功事实证明,来自预测的ABP波形的DBP,MAP和SBP的计算值超过了几个指标下的现有作品,尽管没有明确培训PPG2ABP。
translated by 谷歌翻译
血压(BP)监测对于日常医疗保健至关重要,尤其是对于心血管疾病。但是,BP值主要是通过接触传感方法获得的,这是不方便且不友好的BP测量。因此,我们提出了一个有效的端到端网络,以估算面部视频中的BP值,以实现日常生活中的远程BP测量。在这项研究中,我们首先得出了短期(〜15s)面部视频的时空图。根据时空图,我们随后通过设计的血压分类器回归了BP范围,并同时通过每个BP范围内的血压计算器来计算特定值。此外,我们还制定了一种创新的过采样培训策略,以解决不平衡的数据分配问题。最后,我们在私有数据集ASPD上培训了拟议的网络,并在流行的数据集MMSE-HR上对其进行了测试。结果,拟议的网络实现了收缩压和舒张压测量的最先进的MAE,为12.35 mmHg和9.5 mmHg,这比最近的工作要好。它得出的结论是,在现实世界中,提出的方法对于基于摄像头的BP监测具有巨大潜力。
translated by 谷歌翻译
远程光插图学(RPPG)是一种快速,有效,廉价和方便的方法,用于收集生物识别数据,因为它可以使用面部视频来估算生命体征。事实证明,远程非接触式医疗服务供应在COVID-19大流行期间是可怕的必要性。我们提出了一个端到端框架,以根据用户的视频中的RPPG方法来衡量人们的生命体征,包括心率(HR),心率变异性(HRV),氧饱和度(SPO2)和血压(BP)(BP)(BP)用智能手机相机捕获的脸。我们以实时的基于深度学习的神经网络模型来提取面部标志。通过使用预测的面部标志来提取多个称为利益区域(ROI)的面部斑块(ROI)。应用了几个过滤器,以减少称为血量脉冲(BVP)信号的提取的心脏信号中ROI的噪声。我们使用两个公共RPPG数据集培训和验证了机器学习模型,即Tokyotech RPPG和脉搏率检测(PURE)数据集,我们的模型在其上实现了以下平均绝对错误(MAE):a),HR,1.73和3.95 BEATS- beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-s-s-s-s-s-y-peats-beats-beats-beats-ship-s-s-s-in-chin-p-in-in-in-in-in-c--in-in-c-le-in-in- -t一下制。每分钟(bpm),b)分别为HRV,分别为18.55和25.03 ms,c)对于SPO2,纯数据集上的MAE为1.64。我们在现实生活环境中验证了端到端的RPPG框架,修订,从而创建了视频HR数据集。我们的人力资源估计模型在此数据集上达到了2.49 bpm的MAE。由于没有面对视频的BP测量不存在公开可用的RPPG数据集,因此我们使用了带有指标传感器信号的数据集来训练我们的模型,还创建了我们自己的视频数据集Video-BP。在我们的视频BP数据集中,我们的BP估计模型的收缩压(SBP)达到6.7 mmHg,舒张压(DBP)的MAE为9.6 mmHg。
translated by 谷歌翻译
在医疗保健系统中,需要患者使用可穿戴设备进行远程数据收集和对健康数据的实时监控以及健康状况的状态。可穿戴设备的这种采用导致收集和传输的数据量显着增加。由于设备由较小的电池电源运行,因此由于设备的高处理要求以进行数据收集和传输,因此可以快速减少它们。鉴于医疗数据的重要性,必须所有传输数据遵守严格的完整性和可用性要求。减少医疗保健数据的量和传输频率将通过使用推理算法改善设备电池寿命。有一个以准确性和效率改善传输指标的问题,彼此之间的权衡,例如提高准确性会降低效率。本文表明,机器学习可用于分析复杂的健康数据指标,例如数据传输的准确性和效率,以使用Levenberg-Marquardt算法来克服权衡问题,从而增强这两个指标,从而通过少较少的样本来传输,同时保持维护准确性。使用标准心率数据集测试该算法以比较指标。结果表明,LMA最好以3.33倍的效率进行样本数据尺寸和79.17%的精度,在7种不同的采样案例中具有相似的准确性,用于测试,但表明效率提高。与具有高效率的现有方法相比,这些提出的方法使用机器学习可以显着改善两个指标,而无需牺牲其他指标。
translated by 谷歌翻译
天然气管道中的泄漏检测是石油和天然气行业的一个重要且持续的问题。这尤其重要,因为管道是运输天然气的最常见方法。这项研究旨在研究数据驱动的智能模型使用基本操作参数检测天然气管道的小泄漏的能力,然后使用现有的性能指标比较智能模型。该项目应用观察者设计技术,使用回归分类层次模型来检测天然气管道中的泄漏,其中智能模型充当回归器,并且修改后的逻辑回归模型充当分类器。该项目使用四个星期的管道数据流研究了五个智能模型(梯度提升,决策树,随机森林,支持向量机和人工神经网络)。结果表明,虽然支持向量机和人工神经网络比其他网络更好,但由于其内部复杂性和所使用的数据量,它们并未提供最佳的泄漏检测结果。随机森林和决策树模型是最敏感的,因为它们可以在大约2小时内检测到标称流量的0.1%的泄漏。所有智能模型在测试阶段中具有高可靠性,错误警报率为零。将所有智能模型泄漏检测的平均时间与文献中的实时短暂模型进行了比较。结果表明,智能模型在泄漏检测问题中的表现相对较好。该结果表明,可以与实时瞬态模型一起使用智能模型,以显着改善泄漏检测结果。
translated by 谷歌翻译
Cardiac resynchronization therapy (CRT) is a treatment that is used to compensate for irregularities in the heartbeat. Studies have shown that this treatment is more effective in heart patients with left bundle branch block (LBBB) arrhythmia. Therefore, identifying this arrhythmia is an important initial step in determining whether or not to use CRT. On the other hand, traditional methods for detecting LBBB on electrocardiograms (ECG) are often associated with errors. Thus, there is a need for an accurate method to diagnose this arrhythmia from ECG data. Machine learning, as a new field of study, has helped to increase human systems' performance. Deep learning, as a newer subfield of machine learning, has more power to analyze data and increase systems accuracy. This study presents a deep learning model for the detection of LBBB arrhythmia from 12-lead ECG data. This model consists of 1D dilated convolutional layers. Attention mechanism has also been used to identify important input data features and classify inputs more accurately. The proposed model is trained and validated on a database containing 10344 12-lead ECG samples using the 10-fold cross-validation method. The final results obtained by the model on the 12-lead ECG data are as follows. Accuracy: 98.80+-0.08%, specificity: 99.33+-0.11 %, F1 score: 73.97+-1.8%, and area under the receiver operating characteristics curve (AUC): 0.875+-0.0192. These results indicate that the proposed model in this study can effectively diagnose LBBB with good efficiency and, if used in medical centers, will greatly help diagnose this arrhythmia and early treatment.
translated by 谷歌翻译
对心电图(ECG)信号的调查是诊断心脏病的必要方式,因为ECG过程是非侵入性的,易于使用。这项工作介绍了由几个阶段组成的Supraventriculary的心律失常预测模型,包括噪声过滤,唯一的ECG特征集合,以及自动学习分类模型,以分类不同类型,具体取决于它们的严重程度。我们在执行提取之前,我们去趋势和解除噪声降低噪声以更好地确定功能的信号。之后,我们呈现一个R峰值检测方法和Q-S检测方法作为必要的特征提取的一部分。计算对应于这些功能的下一个参数。使用这些特征,我们已经开发了一种基于机器学习的分类模型,可以成功地分类不同类型的Supraventricular contcardia。我们的研究结果表明,基于决策树的模型是Supraventriculary心动过速心律失常最有效的机器学习模型。在所有机器学习模型中,该模型最有效地降低了Supranculary心动过速的关键信号错误分类。实验结果表明,令人满意的改进,并展示了提出的方法的优越效率,精度为97%。
translated by 谷歌翻译
在医学科学中,在不同疾病上收集多个数据非常重要,并且数据最重要的目标是调查疾病。心肌梗死是死亡率的严重危险因素,并且在以往的研究中,主要重点是通过人口统计学特征,超声心动图和心电图测量心肌梗死的可能性。相反,本研究的目的是利用数据分析算法,并比较他们的心脏病发作患者的准确性,以便通过考虑到应急行动并因此预测心肌梗死期间心肌梗死期间的心肌强度。为此目的,通过数据分析的分类技术收集和研究,包括随机的分类技术,包括随机的分类技术来收集和研究,包括年龄,紧急操作时间,肌酸磷酸氨基酶(CPK)试验,心率,血糖和静脉的105名心肌梗死患者。决策林,决策树,支持向量机(SVM),k离邻居和序数逻辑回归。最后,在平均评估指标方面,选择了精度为76%的随机决定林的模型作为最佳模型。此外,肌酸磷酸氨基酶试验,尿素,白色和红细胞计数,血糖,时间和血红蛋白的七种特征被鉴定为喷射分数变量的最有效特征。
translated by 谷歌翻译
准确诊断睡眠障碍对于临床评估和治疗至关重要。多元素摄影(PSG)长期以来用于检测各种睡眠障碍。在本研究中,心电图(ECG)和电磁影(EMG)已被用于识别呼吸和运动相关的睡眠障碍。除了使用SynchroSquezed小波变换(SSWT)开发迭代脉冲峰值检测算法之外,还通过提取EMG特征来执行生物信号处理,除了开发迭代脉冲峰值检测算法以获得来自ECG的心率和呼吸相关特征的可靠提取心率和呼吸相关的特征。深度学习框架旨在融入EMG和ECG功能。该框架已被用于对四组进行分类:健康受试者,患者阻塞性睡眠呼吸暂停(OSA),患者患者患者,患者患者和OSA和RLS患者。拟议的深度学习框架在我们制定的四类问题的主题中产生了平均准确性为72%,重量F1分数为0.57分。
translated by 谷歌翻译
血流特征的预测对于了解血液动脉网络的行为至关重要,特别是在血管疾病(如狭窄)的存在下。计算流体动力学(CFD)提供了一种强大而有效的工具,可以确定包括网络内的压力和速度字段的这些特征。尽管该领域有许多研究,但CFD的极高计算成本导致研究人员开发新的平台,包括机器学习方法,而是以更低的成本提供更快的分析。在这项研究中,我们提出了一个深度神经网络框架,以预测冠状动脉网络中的流动行为,在存在像狭窄等异常存在下具有不同的性质。为此,使用合成数据训练人工神经网络(ANN)模型,使得它可以预测动脉网络内的压力和速度。培训神经网络所需的数据是从ABAQUS软件的特定特征的次数的CFD分析中获得了培训神经网络的数据。狭窄引起的血压下降,这是诊断心脏病诊断中最重要的因素之一,可以使用我们所提出的模型来了解冠状动脉的任何部分的几何和流动边界条件。使用Lad血管的三个实际几何形状来验证模型的效率。所提出的方法精确地预测了血流量的血流动力学行为。压力预测的平均精度为98.7%,平均速度幅度精度为93.2%。根据测试三个患者特定几何形状的模型的结果,模型可以被认为是有限元方法的替代方案以及其他难以实现的耗时数值模拟。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
主动脉(COA)患者特异性计算流体动力学(CFD)研究的目的 - 在资源约束设置中的研究受到可用成像方式和速度数据采集的可用成像方式的限制。多普勒超声心动图被视为合适的速度获取方式,因为其可用性和安全性较高。这项研究旨在调查经典机器学习(ML)方法的应用,以创建一种适当且可靠的方法,用于从多普勒超声心动图图像中获得边界条件(BCS),用于使用CFD进行血液动力学建模。方法 - 我们提出的方法结合了ML和CFD,以模拟感兴趣区域内的血流动力学流动。该方法的关键特征是使用ML模型来校准CFD模型的入口和出口边界条件(BCS)。 ML模型的关键输入变量是患者心率,因为这是研究中测得的血管的时间变化的参数。在研究的CFD组件中使用ANSYS Fluent,而Scikit-Learn Python库则用于ML分量。结果 - 我们在干预前对严重COA的真实临床案例进行了验证。将我们的模拟的最大缩回速度与从研究中使用的几何形状获得的患者获得的测量最大骨质速度进行了比较。在用于获得BCS的5 mL模型中,顶部模型在测得的最大骨质速度的5 \%之内。结论 - 该框架表明,它能够考虑在测量之间考虑患者心率的变化。因此,当在每个血管上缩放心率时,可以在生理上逼真的BC计算,同时提供合理准确的溶液。
translated by 谷歌翻译
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
Electrocardiography (ECG), an electrical measurement which captures cardiac activities, is the gold standard for diagnosing cardiovascular disease (CVD). However, ECG is infeasible for continuous cardiac monitoring due to its requirement for user participation. By contrast, photoplethysmography (PPG) provides easy-to-collect data, but its limited accuracy constrains its clinical usage. To combine the advantages of both signals, recent studies incorporate various deep learning techniques for the reconstruction of PPG signals to ECG; however, the lack of contextual information as well as the limited abilities to denoise biomedical signals ultimately constrain model performance. In this research, we propose Performer, a novel Transformer-based architecture that reconstructs ECG from PPG and combines the PPG and reconstructed ECG as multiple modalities for CVD detection. This method is the first time that Transformer sequence-to-sequence translation has been performed on biomedical waveform reconstruction, combining the advantages of both PPG and ECG. We also create Shifted Patch-based Attention (SPA), an effective method to encode/decode the biomedical waveforms. Through fetching the various sequence lengths and capturing cross-patch connections, SPA maximizes the signal processing for both local features and global contextual representations. The proposed architecture generates a state-of-the-art performance of 0.29 RMSE for the reconstruction of PPG to ECG on the BIDMC database, surpassing prior studies. We also evaluated this model on the MIMIC-III dataset, achieving a 95.9% accuracy in CVD detection, and on the PPG-BP dataset, achieving 75.9% accuracy in related CVD diabetes detection, indicating its generalizability. As a proof of concept, an earring wearable named PEARL (prototype), was designed to scale up the point-of-care (POC) healthcare system.
translated by 谷歌翻译
目的:我们提出了一种从面部视频中检测到房颤(AF)检测的非接触式方法。方法:记录了100名健康受试者和100名AF患者的面部视频,心电图(ECG)和接触光摄影(PPG)。来自健康受试者的数据记录都被标记为健康。两名心脏病专家评估了患者的心电图记录,并将每种记录标记为AF,窦性心律(SR)或心房颤动(AFL)。我们使用3D卷积神经网络进行远程PPG监测,并提出了新的损耗函数(Wasserstein距离),以使用接触PPG的收缩峰的时间作为我们的模型训练的标签。然后,根据beat间隔计算一组心率变异性(HRV)功能,并使用HRV功能训练支持向量机(SVM)分类器。结果:我们提出的方法可以准确地从面部视频中提取收缩峰以进行AF检测。提出的方法通过与30s视频剪辑的10倍交叉验证进行了训练,并在两个任务上进行了测试。 1)健康与AF的分类:准确性,灵敏度和特异性为96.00%,95.36%和96.12%。 2)SR与AF的分类:准确性,灵敏度和特异性为95.23%,98.53%和91.12%。此外,我们还证明了非接触式AFL检测的可行性。结论:我们通过学习收缩峰来实现非接触AF检测的良好性能。显着性:非接触性AF检测可用于自我筛查,可疑在家中可疑人群或治疗慢性患者治疗后自我监控。
translated by 谷歌翻译