我们研究了在个性化治疗规则下估算介入均值的调整集的选择。我们假设具有,可能是隐藏变量和由可观察变量组成的至少一个调整集的非参数因果图形模型。此外,我们假设可观察变量具有与它们相关的正成本。我们将可观察调整集的成本定义为包含它的变量成本的总和。我们认为,在此设置中,存在最小成本最佳的调整集,从而使其产生的非参数估计值与控制可观察到的可观察调整集中的最小渐近方差。我们的结果基于与原始因果图相关的特殊流量网络的构建。我们表明,可以通过计算网络上的最大流程,然后通过增强路径找到从源可到达的一组顶点来找到最低成本最佳调整集。 OptimalAdj Python包实现本文介绍的算法。
translated by 谷歌翻译
研究了与隐藏变量有关的非循环图(DAG)相关的因果模型中因果效应的识别理论。然而,由于估计它们输出的识别功能的复杂性,因此未耗尽相应的算法。在这项工作中,我们弥合了识别和估算涉及单一治疗和单一结果的人口水平因果效应之间的差距。我们派生了基于功能的估计,在大类隐藏变量DAG中表现出对所识别的效果的双重稳健性,其中治疗满足简单的图形标准;该类包括模型,产生调整和前门功能作为特殊情况。我们还提供必要的和充分条件,其中隐藏变量DAG的统计模型是非分子饱和的,并且意味着对观察到的数据分布没有平等约束。此外,我们推导了一类重要的隐藏变量DAG,这意味着观察到观察到的数据分布等同于完全观察到的DAG等同于(最高的相等约束)。在这些DAG类中,我们推出了实现兴趣目标的半导体效率界限的估计估计值,该估计是治疗满足我们的图形标准的感兴趣的目标。最后,我们提供了一种完整的识别算法,可直接产生基于权重的估计策略,以了解隐藏可变因果模型中的任何可识别效果。
translated by 谷歌翻译
在观察性研究中,经常遇到有关存在或缺乏因果边缘和路径的因果背景知识。由于背景知识而导致的马尔可夫等效dag的子类共享的指向边缘和链接可以由因果关系最大部分定向的无循环图(MPDAG)表示。在本文中,我们首先提供了因果MPDAG的声音和完整的图形表征,并提供了因果MPDAG的最小表示。然后,我们介绍了一种名为Direct Causal子句(DCC)的新颖表示,以统一形式表示所有类型的因果背景知识。使用DCC,我们研究因果背景知识的一致性和等效性,并表明任何因果背景知识集都可以等效地分解为因果MPDAG,以及最小的残留DCC。还提供了多项式时间算法,以检查一致性,等效性并找到分解的MPDAG和残留DCC。最后,有了因果背景知识,我们证明了一个足够且必要的条件来识别因果关系,并且出人意料地发现因果效应的可识别性仅取决于分解的MPDAG。我们还开发了局部IDA型算法,以估计无法识别效应的可能值。模拟表明因果背景知识可以显着提高因果影响的识别性。
translated by 谷歌翻译
Pearl's Do Colculus是一种完整的公理方法,可以从观察数据中学习可识别的因果效应。如果无法识别这种效果,则有必要在系统中执行经常昂贵的干预措施以学习因果效应。在这项工作中,我们考虑了设计干预措施以最低成本来确定所需效果的问题。首先,我们证明了这个问题是NP-HARD,随后提出了一种可以找到最佳解或对数因子近似值的算法。这是通过在我们的问题和最小击球设置问题之间建立联系来完成的。此外,我们提出了几种多项式启发式算法来解决问题的计算复杂性。尽管这些算法可能会偶然发现亚最佳解决方案,但我们的模拟表明它们在随机图上产生了小的遗憾。
translated by 谷歌翻译
解决了选择最佳后门调整集的问题,以解决隐藏和条件变量的图形模型中的因果效应。以前的工作已经定义了实现最小的渐近估计方差,并且在没有隐藏变量的情况下派生的最佳集。对于隐藏变量的情况,可以有设置在没有最佳集合的情况下,并且目前仅导出有限适用性的足够的图形最优标准。在本工作中,最优性的特征在于最大化某个调整信息,该信息允许导出用于存在最佳调整集的必要和足够的图形标准和构造它的定义和算法。此外,如果仅存在有效调整集并且具有比Perkovi {\'C}等所提出的调整集更高(或等于)调整信息,则最佳集是有效的。 [机器学习研究学报,18:1--62,2018]任何图表。结果转化为一类估计的渐近估计差异,其渐近方差遵循某种信息理论关系。数值实验表明,渐近结果也适用于相对较小的样本尺寸,并且最佳调整集或其最小化变体通常也会产生更好的方差,也超出该估计类。令人惊讶的是,在随机创建的设置中,超过90 \%满足最优性条件,指示在许多现实世界场景中也可以保持。代码可用作Python Package \ URL {https://github.com/jakobrunge/tigramite}的一部分。
translated by 谷歌翻译
Front-door adjustment is a classic technique to estimate causal effects from a specified directed acyclic graph (DAG) and observed data. The advantage of this approach is that it uses observed mediators to identify causal effects, which is possible even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given DAG, with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the graph. In our work, we give the first linear-time, i.e. $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity, as the size of the input is $\Omega(n+m)$. We also provide an algorithm to enumerate all front-door adjustment sets in a given DAG with delay $O(n(n + m))$. These results improve the algorithms by Jeong et al. [2022] for the two tasks by a factor of $n^3$, respectively.
translated by 谷歌翻译
常用图是表示和可视化因果关系的。对于少量变量,这种方法提供了简洁和清晰的方案的视图。随着下属的变量数量增加,图形方法可能变得不切实际,并且表示的清晰度丢失。变量的聚类是减少因果图大小的自然方式,但如果任意实施,可能会错误地改变因果关系的基本属性。我们定义了一种特定类型的群集,称为Transit Cluster,保证在某些条件下保留因果效应的可识别性属性。我们提供了一种用于在给定图中查找所有传输群集的声音和完整的算法,并演示集群如何简化因果效应的识别。我们还研究了逆问题,其中一个人以群集的图形开始,寻找扩展图,其中因果效应的可识别性属性保持不变。我们表明这种结构稳健性与过境集群密切相关。
translated by 谷歌翻译
治疗效应估计的因果推理方法通常假设独立的实验单位。但是,由于实验单元可能会相互作用,因此这种假设通常值得怀疑。我们开发了增强的反可能性加权(AIPW),以估计和推断因果治疗对依赖观察数据的影响。我们的框架涵盖了网络中相互作用的单位引起的溢出效应的非常普遍的案例。我们使用插件机学习来估计无限维的滋扰成分,导致一致的治疗效应估计器以参数速率收敛,渐近地遵循高斯分布。
translated by 谷歌翻译
Wien \ \'inst,Bannach和li \'Skiewicz(AAAI 2021)最近给出了一种用于计算马尔可夫等效类中定向无环形数量数量的多项式精确算法。在本文中,我们考虑了更一般的问题当某些边缘的方向也固定时,计算马尔可夫等效类中有向无环的数量的数量(例如,在部分可用的介入数据时会出现此设置)。从理论上讲,复杂性。相比之下,我们证明了问题在有趣的一类实例中仍然可以解决,它是通过确定``固定参数tractable''。特别是,我们的计数算法在时间范围内运行。多项式在图的大小中,其中多项式的程度\ emph {not}取决于提供的附加边数作为输入的数量。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
因果鉴定是因果推理文献的核心,在该文献中提出了完整的算法来识别感兴趣的因果问题。这些算法的有效性取决于访问正确指定的因果结构的限制性假设。在这项工作中,我们研究了可获得因果结构概率模型的环境。具体而言,因果图中的边缘是分配的概率,例如,可能代表来自领域专家的信念程度。另外,关于边缘的不确定的可能反映了特定统计检验的置信度。在这种情况下自然出现的问题是:给定这样的概率图和感兴趣的特定因果效应,哪些具有最高合理性的子图是什么?我们表明回答这个问题减少了解决NP-HARD组合优化问题,我们称之为边缘ID问题。我们提出有效的算法来近似此问题,并评估我们针对现实世界网络和随机生成图的算法。
translated by 谷歌翻译
尽管在治疗和结果之间存在未衡量的混杂因素,但前门标准可用于识别和计算因果关系。但是,关键假设 - (i)存在充分介导治疗对结果影响的变量(或一组变量)的存在,(ii)同时并不遭受类似的混淆问题的困扰 - outcome对 - 通常被认为是难以置信的。本文探讨了这些假设的可检验性。我们表明,在涉及辅助变量的轻度条件下,可以通过广义平等约束也可以测试前门模型中编码的假设(以及简单的扩展)。我们基于此观察结果提出了两个合适性测试,并评估我们对真实和合成数据的提议的疗效。我们还将理论和经验比较与仪器可变方法处理未衡量的混杂。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
我们考虑代表代理模型的问题,该模型使用我们称之为CSTREES的阶段树模型的适当子类对离散数据编码离散数据的原因模型。我们表明,可以通过集合表达CSTREE编码的上下文专用信息。由于并非所有阶段树模型都承认此属性,CSTREES是一个子类,可提供特定于上下文的因果信息的透明,直观和紧凑的表示。我们证明了CSTREEES承认全球性马尔可夫属性,它产生了模型等价的图形标准,概括了Verma和珍珠的DAG模型。这些结果延伸到一般介入模型设置,使CSTREES第一族的上下文专用模型允许介入模型等价的特征。我们还为CSTREE的最大似然估计器提供了一种封闭式公式,并使用它来表示贝叶斯信息标准是该模型类的本地一致的分数函数。在模拟和实际数据上分析了CSTHEELE的性能,在那里我们看到与CSTREELE而不是一般上演树的建模不会导致预测精度的显着损失,同时提供了特定于上下文的因果信息的DAG表示。
translated by 谷歌翻译
我们分析了在没有特定分布假设的常规设置中从观察数据的学习中学循环图形模型的复杂性。我们的方法是信息定理,并使用本地马尔可夫边界搜索程序,以便在基础图形模型中递归地构建祖先集。也许令人惊讶的是,我们表明,对于某些图形集合,一个简单的前向贪婪搜索算法(即没有向后修剪阶段)足以学习每个节点的马尔可夫边界。这显着提高了我们在节点的数量中显示的样本复杂性。然后应用这一点以在从文献中概括存在现有条件的新型标识性条件下学习整个图。作为独立利益的问题,我们建立了有限样本的保障,以解决从数据中恢复马尔可夫边界的问题。此外,我们将我们的结果应用于特殊情况的Polytrees,其中假设简化,并提供了多项识别的明确条件,并且在多项式时间中可以识别和可知。我们进一步说明了算法在仿真研究中易于实现的算法的性能。我们的方法是普遍的,用于无需分布假设的离散或连续分布,并且由于这种棚灯对有效地学习来自数据的定向图形模型结构所需的最小假设。
translated by 谷歌翻译
我们研究了与从介入数据中恢复因果图有关的两个问题:(i)$ \ textIt {verification} $,其中的任务是检查声称的因果图是否正确,并且(ii)$ \ textit {search} $,任务是恢复正确的因果图。对于这两者,我们都希望最大程度地减少执行的干预措施的数量。对于第一个问题,我们给出了一组最小尺寸的原子干预措施的表征,这些干预措施是必要且足以检查所要求的因果图的正确性。我们的表征使用$ \ textit {coving edges} $的概念,这使我们能够获得简单的证据,并且很容易理解早期结果。我们还将结果推广到有限尺寸干预措施和节点依赖性干预成本的设置。对于上述所有设置,我们提供了第一种已知的可验证算法,用于有效地计算(接近)一般图上的最佳验证集。对于第二个问题,我们给出了一种基于图形分离器的简单自适应算法,该算法会产生一个原子干预集,该集合在使用$ \ MATHCAL {O}(\ log n)$ times $ times所需的$所需干预措施时,该算法完全围绕任何必需图表。 \ textIt {verify} $(验证大小)$ n $顶点上的基础dag。相对于验证大小而言,此近似值是紧密的,因为$ \ textit {any} $搜索算法的最差情况是$ \ omega(\ log n)$的最差情况。使用有限的大小干预措施,每个大小$ \ leq k $,我们的算法给出了$ \ mathcal {o}(\ log n \ cdot \ log \ log \ log k)$ factor actialation。我们的结果是第一种已知的算法,该算法对一般未加权图和有界尺寸干预的验证尺寸提供了非平凡的近似保证。
translated by 谷歌翻译
We study experiment design for unique identification of the causal graph of a system where the graph may contain cycles. The presence of cycles in the structure introduces major challenges for experiment design as, unlike acyclic graphs, learning the skeleton of causal graphs with cycles may not be possible from merely the observational distribution. Furthermore, intervening on a variable in such graphs does not necessarily lead to orienting all the edges incident to it. In this paper, we propose an experiment design approach that can learn both cyclic and acyclic graphs and hence, unifies the task of experiment design for both types of graphs. We provide a lower bound on the number of experiments required to guarantee the unique identification of the causal graph in the worst case, showing that the proposed approach is order-optimal in terms of the number of experiments up to an additive logarithmic term. Moreover, we extend our result to the setting where the size of each experiment is bounded by a constant. For this case, we show that our approach is optimal in terms of the size of the largest experiment required for uniquely identifying the causal graph in the worst case.
translated by 谷歌翻译
Variational autoencoders and Helmholtz machines use a recognition network (encoder) to approximate the posterior distribution of a generative model (decoder). In this paper we study the necessary and sufficient properties of a recognition network so that it can model the true posterior distribution exactly. These results are derived in the general context of probabilistic graphical modelling / Bayesian networks, for which the network represents a set of conditional independence statements. We derive both global conditions, in terms of d-separation, and local conditions for the recognition network to have the desired qualities. It turns out that for the local conditions the property perfectness (for every node, all parents are joined) plays an important role.
translated by 谷歌翻译
不观察到的混淆是观测数据的因果效应估计的主要障碍。仪器变量(IVS)广泛用于存在潜在混淆时的因果效应估计。利用标准IV方法,当给定的IV有效时,可以获得无偏估计,但标准IV的有效性要求是严格和不可能的。已经提出了通过调节一组观察变量(称为条件IV的调节装置)来放松标准IV的要求。然而,用于查找条件IV的调节集的标准需要完整的因果结构知识或指向的非循环图(DAG),其代表观察到和未观察的变量的因果关系。这使得无法发现直接从数据设置的调节。在本文中,通过利用潜在变量的因果推断中的最大祖先图(MAGS),我们提出了一种新型的MAG中的IV,祖先IV,并开发了支持给定祖传的调节装置的数据驱动的发现iv在mag。基于该理论,我们在MAG和观测数据中开发了一种与祖先IV的非偏见因果效应估计的算法。与现有IV方法相比,对合成和实际数据集的广泛实验表明了算法的性能。
translated by 谷歌翻译
在科学研究和现实世界应用的许多领域中,非实验数据的因果效应的无偏估计对于理解数据的基础机制以及对有效响应或干预措施的决策至关重要。从不同角度对这个具有挑战性的问题进行了大量研究。对于数据中的因果效应估计,始终做出诸如马尔可夫财产,忠诚和因果关系之类的假设。在假设下,仍然需要一组协变量或基本因果图之类的全部知识。一个实用的挑战是,在许多应用程序中,没有这样的全部知识或只有某些部分知识。近年来,研究已经出现了基于图形因果模型的搜索策略,以从数据中发现有用的知识,以进行因果效应估计,并具有一些温和的假设,并在应对实际挑战方面表现出了诺言。在这项调查中,我们回顾了方法,并关注数据驱动方法所面临的挑战。我们讨论数据驱动方法的假设,优势和局限性。我们希望这篇综述将激励更多的研究人员根据图形因果建模设计更好的数据驱动方法,以解决因果效应估计的具有挑战性的问题。
translated by 谷歌翻译