当由于雨或雪等外部条件而突然牵引时,漂移控制对于自主车辆的安全性是显着的。由于存在显着的侧滑和轮胎几乎完整的饱和度,这是一个具有挑战性的控制问题。在本文中,我们专注于在固定或移动中心的圆形路径之后控制漂移行动,可能会导致轮胎地面互动的变化,这是漂移爱好者的常见培训任务,因此可以用作性能的基准漂移控制。为了实现上述任务,我们提出了一种新颖的等级控制架构,其解耦了轨迹的曲率和中心控制。特别地,外环通过调谐目标曲率来稳定中心,并且内环使用由$ \ mathcal {l} _1 $自适应组件增强的前馈/反馈控制器跟踪曲率。分层体系结构是灵活的,因为内部环路是任务 - 不可行的和适应轮胎道路交互的变化,这允许外部环路独立于低电平动态设计,打开结合复杂的规划算法的可能性。我们在仿真平台以及1/10级无线电控制〜(RC)汽车上实施我们的控制策略,仿真和实验结果都说明了我们在实现上述漂移机动任务方案集中的策略的有效性。
translated by 谷歌翻译
In this paper, we propose an effective unified control law for accurately tracking agile trajectories for lifting-wing quadcopters with different installation angles, which have the capability of vertical takeoff and landing (VTOL) as well as high-speed cruise flight. First, we derive a differential flatness transform for the lifting-wing dynamics with a nonlinear model under coordinated turn condition. To increase the tracking performance on agile trajectories, the proposed controller incorporates the state and input variables calculated from differential flatness as feedforward. In particular, the jerk, the 3-order derivative of the trajectory, is converted into angular velocity as a feedforward item, which significantly improves the system bandwidth. At the same time, feedback and feedforward outputs are combined to deal with external disturbances and model mismatch. The control algorithm has been thoroughly evaluated in the outdoor flight tests, which show that it can achieve accurate trajectory tracking.
translated by 谷歌翻译
本文提出了一项新颖的控制法,以使用尾随机翼无人驾驶飞机(UAV)进行准确跟踪敏捷轨迹,该轨道在垂直起飞和降落(VTOL)和向前飞行之间过渡。全球控制配方可以在整个飞行信封中进行操作,包括与Sideslip的不协调的飞行。显示了具有简化空气动力学模型的非线性尾尾动力学的差异平坦度。使用扁平度变换,提出的控制器结合了位置参考的跟踪及其导数速度,加速度和混蛋以及偏航参考和偏航速率。通过角速度进纸术语包含混蛋和偏航率参考,可以改善随着快速变化的加速度跟踪轨迹。控制器不取决于广泛的空气动力学建模,而是使用增量非线性动态反演(INDI)仅基于局部输入输出关系来计算控制更新,从而导致对简化空气动力学方程中差异的稳健性。非线性输入输出关系的精确反转是通过派生的平坦变换实现的。在飞行测试中对所得的控制算法进行了广泛的评估,在该测试中,它展示了准确的轨迹跟踪和挑战性敏捷操作,例如侧向飞行和转弯时的侵略性过渡。
translated by 谷歌翻译
从教育和研究的角度来看,关于硬件的实验是机器人技术和控制的关键方面。在过去的十年中,已经介绍了许多用于车轮机器人的开源硬件和软件框架,主要采用独轮车和类似汽车的机器人的形式,目的是使更广泛的受众访问机器人并支持控制系统开发。独轮车通常很小且便宜,因此有助于在较大的机队中进行实验,但它们不适合高速运动。类似汽车的机器人更敏捷,但通常更大且更昂贵,因此需要更多的空间和金钱资源。为了弥合这一差距,我们介绍了Chronos,这是一种具有定制开源电子设备的新型汽车的1/28比例机器人,以及CRS是用于控制和机器人技术的开源软件框架。 CRS软件框架包括实施各种最新的算法,以进行控制,估计和多机构协调。通过这项工作,我们旨在更轻松地使用硬件,并减少启动新的教育和研究项目所需的工程时间。
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
由于这些要求的竞争性质,尤其是在一系列的运行速度和条件下,在转向控制中的准确性和误差融合与优美运动的平衡路径与优美的运动具有挑战性。本文表明,考虑滑移对运动学控制,动态控制和转向执行器速率命令的影响的集成多层转向控制器可实现准确且优美的路径。这项工作建立在多层侧滑和基于YAW的模型上,该模型允许派生控制器考虑由于侧滑而引起的误差以及转向命令和优美的侧向运动之间的映射。基于观察者的侧滑估计与运动控制器中的标题误差相结合,以提供前馈滑移补偿。使用基于速度的路径歧管,通过连续变量结构控制器(VSC)来补偿路径以下误差,以平衡优雅的运动和误差收敛。后台动态控制器使用结果偏航率命令来生成转向率命令。高增益观察者(HGO)估计输出反馈控制的侧滑和偏航率。提供了输出反馈控制器的稳定性分析,并解决了峰值。该工作仅针对侧向控制,因此转向控制器可以与其他速度控制器结合使用。现场结果提供了与相关方法的比较,这些方法在不同的复杂情况下证明了具有不同天气条件和扰动的不同复杂情况。
translated by 谷歌翻译
自主赛车是一项研究领域,由于它将自动驾驶算法推向极限,并作为一般自主驾驶的催化剂。对于规模的自主赛车平台,计算约束和复杂性通常会限制模型预测控制(MPC)的使用。结果,几何控制器是最常部署的控制器。它们在实施和操作简单性的同时被证明是性能。然而,他们固有地缺乏模型动力学的结合,因此将赛车限制在可以忽略轮胎滑动的速度域。本文介绍了基于模型和加速度的追求(MAP)基于高性能模型的轨迹跟踪算法,该算法在利用轮胎动力学的同时保留了几何方法的简单性。与最先进的几何控制器相比,所提出的算法允许在前所未有的速度上准确跟踪轨迹。在横向跟踪误差方面,在实验上验证了地图控制器,并胜过参考几何控制器四倍,以高达11m/s的测试速度产生0.055m的跟踪误差。
translated by 谷歌翻译
神经网络已越来越多地用于模型预测控制器(MPC)来控制非线性动态系统。但是,MPC仍然提出一个问题,即可实现的更新率不足以应对模型不确定性和外部干扰。在本文中,我们提出了一种新颖的控制方案,该方案可以使用MPC的神经网络动力学设计最佳的跟踪控制器,从而使任何现有基于模型的Feedforward Controller的插件扩展程序都可以应用于插件。我们还描述了我们的方法如何处理包含历史信息的神经网络,该信息不遵循一般的动态形式。该方法通过其在外部干扰的经典控制基准中的性能进行评估。我们还扩展了控制框架,以应用于具有未知摩擦的积极自主驾驶任务。在所有实验中,我们的方法的表现都优于比较的方法。我们的控制器还显示出低控制的水平,表明我们的反馈控制器不会干扰MPC的最佳命令。
translated by 谷歌翻译
在本文中,我们提出了针对无人接地车辆(UGV)的新的控制屏障功能(CBF),该功能有助于避免与运动学(非零速度)障碍物发生冲突。尽管当前的CBF形式已经成功地保证了与静态障碍物的安全/碰撞避免安全性,但动态案例的扩展已获得有限的成功。此外,借助UGV模型,例如Unicycle或自行车,现有CBF的应用在控制方面是保守的,即在某些情况下不可能进行转向/推力控制。从经典的碰撞锥中汲取灵感来避免轨迹规划,我们介绍了其新颖的CBF配方,并具有对独轮车和自行车模型的安全性保证。主要思想是确保障碍物的速度W.R.T.车辆总是指向车辆。因此,我们构建了一个约束,该约束确保速度向量始终避开指向车辆的向量锥。这种新控制方法的功效在哥白尼移动机器人上进行了实验验证。我们将其进一步扩展到以自行车模型的形式扩展到自动驾驶汽车,并在Carla模拟器中的各种情况下证明了避免碰撞。
translated by 谷歌翻译
微空中车辆(MAVS)在户外操作的限制靠近障碍物,通过他们承受风阵风的能力。目前广泛的位置控制方法,例如比例整体衍生物控制在阵风的影响下不会均匀。增量非线性动态反转(INDI)是一种基于传感器的控制技术,可以控制受扰动的非线性系统。它是为载人飞机或MAVS的态度控制而开发的。在本文中,我们将这种方法概括为严重燃烧负载下MAV的外环控制。在一个实验中对传统的比例积分衍生物(PID)控制器的显着改进进行了说明,其中四轮电机在10米/秒的吹风机排气进出中。控制方法不依赖于频繁的位置更新,如使用标准GPS模块的外部实验中所示。最后,我们研究了使用线性化来计算推力向量增量的效果,与非线性计算相比。该方法需要很少的建模并且是计算效率。
translated by 谷歌翻译
延迟在迅速变化的环境中运行的自主系统的危害安全性,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地和统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力学; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用的优点,我们证明我们的方法适合自动驾驶和自动赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护器。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
本文介绍了一种用于自主车辆的耦合,神经网络辅助纵向巡航和横向路径跟踪控制器,具有模型不确定性和经历未知的外部干扰。使用反馈误差学习机制,采用利用自适应径向基函数(RBF)神经网络的反向车辆动态学习方案,称为扩展的最小资源分配网络(EMRAN)。 EMRAN使用扩展的卡尔曼滤波器进行在线学习和体重更新,并采用了一种越来越多的/修剪策略,用于维护紧凑的网络,以便更容易地实现。在线学习算法处理参数化不确定性,并消除了未知干扰在道路上的影响。结合用于提高泛化性能的自我调节学习方案,所提出的EMRAN辅助控制架构辅助基本PID巡航和斯坦利路径跟踪控制器以耦合的形式。与传统的PID和斯坦利控制器相比,其对各种干扰和不确定性的性能和鲁棒性以及与基于模糊的PID控制器和主动扰动抑制控制(ADRC)方案的比较。慢速和高速场景介绍了仿真结果。根均线(RMS)和最大跟踪误差清楚地表明提出的控制方案在未知环境下实现自动车辆中更好的跟踪性能的有效性。
translated by 谷歌翻译
Accurate path following is challenging for autonomous robots operating in uncertain environments. Adaptive and predictive control strategies are crucial for a nonlinear robotic system to achieve high-performance path following control. In this paper, we propose a novel learning-based predictive control scheme that couples a high-level model predictive path following controller (MPFC) with a low-level learning-based feedback linearization controller (LB-FBLC) for nonlinear systems under uncertain disturbances. The low-level LB-FBLC utilizes Gaussian Processes to learn the uncertain environmental disturbances online and tracks the reference state accurately with a probabilistic stability guarantee. Meanwhile, the high-level MPFC exploits the linearized system model augmented with a virtual linear path dynamics model to optimize the evolution of path reference targets, and provides the reference states and controls for the low-level LB-FBLC. Simulation results illustrate the effectiveness of the proposed control strategy on a quadrotor path following task under unknown wind disturbances.
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
已经使用基于物理学的模型对非全面车辆运动进行了广泛的研究。使用这些模型时,使用线性轮胎模型来解释车轮/接地相互作用时的通用方法,因此可能无法完全捕获各种环境下的非线性和复杂动力学。另一方面,神经网络模型已在该域中广泛使用,证明了功能强大的近似功能。但是,这些黑盒学习策略完全放弃了现有的知名物理知识。在本文中,我们无缝将深度学习与完全不同的物理模型相结合,以赋予神经网络具有可用的先验知识。所提出的模型比大边距的香草神经网络模型显示出更好的概括性能。我们还表明,我们的模型的潜在特征可以准确地表示侧向轮胎力,而无需进行任何其他训练。最后,我们使用从潜在特征得出的本体感受信息开发了一种风险感知的模型预测控制器。我们在未知摩擦下的两个自动驾驶任务中验证了我们的想法,表现优于基线控制框架。
translated by 谷歌翻译
本文介绍了用于自动赛车的多层运动计划和控制架构,能够避免静态障碍,进行主动超越并达到75 $ m/s $以上的速度。使用的脱机全局轨迹生成和在线模型预测控制器高度基于车辆的优化和动态模型,在该模型中,在基本的Pacejka Magic公式的扩展版本中,轮胎和弯曲效果表示。使用多体汽车运动库鉴定并验证了所提出的单轨模型,这些模型允许正确模拟车辆动力学,在丢失实际实验数据时尤其有用。调整了控制器的基本正规化项和约束,以降低输入的变化速率,同时确保可接受的速度和路径跟踪。运动计划策略由一个基于Fren \'ET框架的计划者组成,该计划者考虑了Kalman过滤器产生的对手的预测。策划者选择了无碰撞路径和速度轮廓要在3秒钟的视野中跟踪,以实现不同的目标,例如跟随和超车。该提议的解决方案已应用于达拉拉AV-21赛车,并在椭圆形赛道上进行了测试,可实现高达25 $ m/s^{2} $的横向加速度。
translated by 谷歌翻译
陆地 - 空中双模车辆在学术界和工业中绽放,因为它们融入了空中车辆的高流动性和地面车辆的长期耐力。在这项工作中,我们提出了一种自主和自适应的导航框架,为这类车辆带来完全自主权。该框架主要包括1)分层运动规划器,在未知环境中产生安全和低功率的地面 - 鸟轨迹,2)统一运动控制器,其动态地调整陆地运动中的能量消耗。广泛的现实实验和基准比较是在定制的机器人平台上进行的,以验证所提出的框架的稳健性和性能。在测试期间,机器人安全地穿越了陆地集成流动性的复杂环境,并在地面运动中实现了7美元的节能。最后,我们将为社区的引用发出我们的代码和硬件配置。
translated by 谷歌翻译