陆地 - 空中双模车辆在学术界和工业中绽放,因为它们融入了空中车辆的高流动性和地面车辆的长期耐力。在这项工作中,我们提出了一种自主和自适应的导航框架,为这类车辆带来完全自主权。该框架主要包括1)分层运动规划器,在未知环境中产生安全和低功率的地面 - 鸟轨迹,2)统一运动控制器,其动态地调整陆地运动中的能量消耗。广泛的现实实验和基准比较是在定制的机器人平台上进行的,以验证所提出的框架的稳健性和性能。在测试期间,机器人安全地穿越了陆地集成流动性的复杂环境,并在地面运动中实现了7美元的节能。最后,我们将为社区的引用发出我们的代码和硬件配置。
translated by 谷歌翻译
本文在移动平台上介绍了四摩托车的自动起飞和着陆系统。设计的系统解决了三个具有挑战性的问题:快速姿势估计,受限的外部定位和有效避免障碍物。具体而言,首先,我们基于Aruco标记设计了着陆识别和定位系统,以帮助四极管快速计算相对姿势。其次,我们利用基于梯度的本地运动计划者快速生成无冲突的参考轨迹;第三,我们构建了一台自主状态机器,使四极管能够完全自治完成其起飞,跟踪和着陆任务;最后,我们在模拟,现实世界和室外环境中进行实验,以验证系统的有效性并证明其潜力。
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
四型是敏捷平台。对于人类专家,他们可以在混乱的环境中进行极高的高速航班。但是,高速自主飞行仍然是一个重大挑战。在这项工作中,我们提出了一种基于走廊约束的最小控制工作轨迹优化(MINCO)框架的运动计划算法。具体而言,我们使用一系列重叠球来表示环境的自由空间,并提出了两种新型设计,使算法能够实时计划高速四轨轨迹。一种是一种基于采样的走廊生成方法,该方法在两个相邻球之间生成具有大型重叠区域(因此总走廊大小)的球体。第二个是一个后退的地平线走廊(RHC)策略,其中部分生成的走廊在每个补给中都重复使用。这两种设计一起,根据四极管的当前状态扩大走廊的空间,因此使四极管可以高速操纵。我们根据其他最先进的计划方法基准了我们的算法,以显示其在模拟中的优势。还进行了全面的消融研究,以显示这两种设计的必要性。最终在木材环境中对自动激光雷达四型二次无人机进行了评估,该方法的飞行速度超过13.7 m/s,而没有任何先前的环境或外部定位设施图。
translated by 谷歌翻译
导航动态环境要求机器人生成无碰撞的轨迹,并积极避免移动障碍。大多数以前的作品都基于一个单个地图表示形式(例如几何,占用率或ESDF地图)设计路径计划算法。尽管他们在静态环境中表现出成功,但由于地图表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在板载视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何形式跟踪和表示动态对象。拟议的优化首先采用基于圆的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。仿真和物理实验证明,我们的方法可以实时运行以安全地导航动态环境。
translated by 谷歌翻译
Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to $90^\circ$. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90$^\circ$, angular speeds up to 750~deg/s, and accelerations up to 10~m/s$^2$.
translated by 谷歌翻译
本文提出了一种新型的空中栖息轨迹计划方法。与现有工作相比,终端状态和轨迹持续时间可以自适应地调整,而不是预先确定。此外,我们的计划者能够最大程度地减少安全性和动态可行性前提的切向相对速度。此功能在具有低操作性或空间不够的情况下的微型航空机器人上特别值得注意。此外,我们设计了一种灵活的转换策略,以消除终端约束以及减少优化变量。此外,我们考虑了精确的SE(3)运动计划,以确保无人机直到最后一刻才能触及着陆平台。所提出的方法通过棕榈大小的微型航空机器人在船上进行了验证,其推力和力矩(推力重量比1.7)栖息在移动倾斜的表面上。足够的实验结果表明,我们的计划者在20ms内产生最佳轨迹,并以2ms的温暖起步进行补充。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
在本文中,我们提出了一种反应性约束导航方案,并避免了无人驾驶汽车(UAV)的嵌入式障碍物,以便在障碍物密集的环境中实现导航。拟议的导航体系结构基于非线性模型预测控制(NMPC),并利用板载2D激光雷达来检测障碍物并在线转换环境的关键几何信息为NMPC的参数约束,以限制可用位置空间的可用位置空间无人机。本文还重点介绍了所提出的反应导航方案的现实实施和实验验证,并将其应用于多个具有挑战性的实验室实验中,我们还与相关的反应性障碍物避免方法进行了比较。提出的方法中使用的求解器是优化引擎(开放)和近端平均牛顿进行最佳控制(PANOC)算法,其中采用了惩罚方法来正确考虑导航任务期间的障碍和输入约束。拟议的新颖方案允许快速解决方案,同时使用有限的车载计算能力,这是无人机的整体闭环性能的必需功能,并在多个实时场景中应用。内置障碍物避免和实时适用性的结合使所提出的反应性约束导航方案成为无人机的优雅框架,能够执行快速的非线性控制,本地路径计划和避免障碍物,所有框架都嵌入了控制层中。
translated by 谷歌翻译
By utilizing only depth information, the paper introduces a novel but efficient local planning approach that enhances not only computational efficiency but also planning performances for memoryless local planners. The sampling is first proposed to be based on the depth data which can identify and eliminate a specific type of in-collision trajectories in the sampled motion primitive library. More specifically, all the obscured primitives' endpoints are found through querying the depth values and excluded from the sampled set, which can significantly reduce the computational workload required in collision checking. On the other hand, we furthermore propose a steering mechanism also based on the depth information to effectively prevent an autonomous vehicle from getting stuck when facing a large convex obstacle, providing a higher level of autonomy for a planning system. Our steering technique is theoretically proved to be complete in scenarios of convex obstacles. To evaluate effectiveness of the proposed DEpth based both Sampling and Steering (DESS) methods, we implemented them in the synthetic environments where a quadrotor was simulated flying through a cluttered region with multiple size-different obstacles. The obtained results demonstrate that the proposed approach can considerably decrease computing time in local planners, where more trajectories can be evaluated while the best path with much lower cost can be found. More importantly, the success rates calculated by the fact that the robot successfully navigated to the destinations in different testing scenarios are always higher than 99.6% on average.
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
在机器人研究中,在不平坦的地形中安全导航是一个重要的问题。在本文中,我们提出了一个2.5D导航系统,该系统包括高程图构建,路径规划和本地路径,随后避免了障碍。对于本地路径,我们使用模型预测路径积分(MPPI)控制方法。我们为MPPI提出了新的成本功能,以使其适应高程图和通过不平衡运动。我们在多个合成测试和具有不同类型的障碍物和粗糙表面的模拟环境中评估系统。
translated by 谷歌翻译
无人的表面容器(USV)广泛用于海洋勘探和环境保护场。为了确保USV能够成功执行其任务,轨迹计划和运动跟踪是两种最关键的技术。在本文中,我们根据优化理论提出了一种新型的USV轨迹生成和跟踪方法。具体而言,USV动力学模型以差异平坦度进行描述,因此在最佳边界值的目标下,在线性不变系统表达式中可以通过动态RRT*生成轨迹。为了降低样本数并提高效率,我们通过局部优化调整轨迹。在优化过程中考虑了动态约束,因此生成的轨迹符合未散发船体的运动学特征,并使其更容易跟踪。最后,在顺序二次编程问题下使用模型预测控制添加运动跟踪。实验结果表明,计划的轨迹与USV的运动学特性更加一致,并且跟踪精度仍然更高。
translated by 谷歌翻译
二次运动的准确轨迹跟踪控制对于在混乱环境中的安全导航至关重要。但是,由于非线性动态,复杂的空气动力学效应和驱动约束,这在敏捷飞行中具有挑战性。在本文中,我们通过经验比较两个最先进的控制框架:非线性模型预测控制器(NMPC)和基于差异的控制器(DFBC),通过以速度跟踪各种敏捷轨迹,最多20 m/s(即72 km/h)。比较在模拟和现实世界环境中进行,以系统地评估这两种方法从跟踪准确性,鲁棒性和计算效率的方面。我们以更高的计算时间和数值收敛问题的风险来表明NMPC在跟踪动态不可行的轨迹方面的优势。对于这两种方法,我们还定量研究了使用增量非线性动态反演(INDI)方法添加内环控制器的效果,以及添加空气动力学阻力模型的效果。我们在世界上最大的运动捕获系统之一中进行的真实实验表明,NMPC和DFBC的跟踪误差降低了78%以上,这表明有必要使用内环控制器和用于敏捷轨迹轨迹跟踪的空气动力学阻力模型。
translated by 谷歌翻译
作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。但是,由于非体力学动力学,尤其是在存在非结构化的环境和动态障碍的情况下,没有能够有效的轨迹计划解决方案能够为空间周期关节优化。为了弥合差距,我们提出了一种多功能和实时轨迹优化方法,该方法可以在任意约束下使用完整的车辆模型生成高质量的可行轨迹。通过利用类似汽车的机器人的差异平坦性能,我们使用平坦的输出来分析所有可行性约束,以简化轨迹计划问题。此外,通过全尺寸多边形实现避免障碍物,以产生较少的保守轨迹,并具有安全保证,尤其是在紧密约束的空间中。我们通过最先进的方法介绍了全面的基准测试,这证明了所提出的方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将发布我们的代码作为开源软件包,目的是参考研究社区。
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
近年来,空中机器人背景下的高速导航和环境互动已成为几个学术和工业研究研究的兴趣领域。特别是,由于其若干环境中的潜在可用性,因此搜索和拦截(SAI)应用程序造成引人注目的研究区域。尽管如此,SAI任务涉及有关感官权重,板载计算资源,致动设计和感知和控制算法的具有挑战性的发展。在这项工作中,已经提出了一种用于高速对象抓握的全自动空中机器人。作为一个额外的子任务,我们的系统能够自主地刺穿位于靠近表面的杆中的气球。我们的第一款贡献是在致动和感觉水平的致动和感觉水平的空中机器人的设计,包括具有额外传感器的新型夹具设计,使机器人能够高速抓住物体。第二种贡献是一种完整的软件框架,包括感知,状态估计,运动计划,运动控制和任务控制,以便快速且强大地执行自主掌握任务。我们的方法已在一个具有挑战性的国际竞争中验证,并显示出突出的结果,能够在室外环境中以6米/分来自动搜索,遵循和掌握移动物体
translated by 谷歌翻译
在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
视觉惯性进程(VIO)被广泛用于多次计算机的状态估计,但在很少的视觉特征或过度攻击性飞行中的环境中起作用可能很差。在这项工作中,我们建议使用任何基于功能的VIO算法使用的多杆避免感知碰撞轨迹轨迹计划器。我们的方法能够以快速的速度飞行车辆到达目标位置,从而避免在未知的固定环境中遇到障碍,同时达到良好的VIO状态估计精度。拟议的规划师样本了一组最小的混蛋轨迹,并发现其中无冲突的轨迹,然后根据其目标和感知质量对其进行评估。特征及其位置的运动模糊都是为了感知质量。我们对功能运动模糊的新颖考虑使轨迹在具有不同光级别的环境下的侵略性自动适应。评估中的最佳轨迹是由车辆跟踪的,当从相机中收到新图像时,将以退缩的方式更新。仅对VIO做出了通用假设,因此计划器可以与各种现有系统一起使用。提出的方法可以在船上的小型嵌入式计算机上实时运行。我们通过在室内和室外环境中进行实验验证了我们提出的方法的有效性。与感知不可或缺的策划者相比,提议的计划者在摄像机的视野中保留了更多功能,并使飞行变得不那么侵略性,从而使VIO更加准确。它还减少了VIO失败,这是对感知态度计划者的发生,但并非针对拟议的计划者。还验证了拟议的规划师飞越密集障碍的能力。可以在https://youtu.be/qo3lzirpwtq上找到实验视频。
translated by 谷歌翻译