作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。但是,由于非体力学动力学,尤其是在存在非结构化的环境和动态障碍的情况下,没有能够有效的轨迹计划解决方案能够为空间周期关节优化。为了弥合差距,我们提出了一种多功能和实时轨迹优化方法,该方法可以在任意约束下使用完整的车辆模型生成高质量的可行轨迹。通过利用类似汽车的机器人的差异平坦性能,我们使用平坦的输出来分析所有可行性约束,以简化轨迹计划问题。此外,通过全尺寸多边形实现避免障碍物,以产生较少的保守轨迹,并具有安全保证,尤其是在紧密约束的空间中。我们通过最先进的方法介绍了全面的基准测试,这证明了所提出的方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将发布我们的代码作为开源软件包,目的是参考研究社区。
translated by 谷歌翻译
路径规划是自治车辆运动规划中的关键组成部分。路径指定车辆将旅行的几何形状,因此,对安全和舒适的车辆运动至关重要。对于城市驾驶场景,自治车辆需要能够在杂乱的环境中导航,例如,道路部分被侧面挡住的车辆/障碍物。如何生成运动学上可行和平滑的路径,可以避免复杂环境中的碰撞,使路径规划有挑战性的问题。在本文中,我们提出了一种新型二次编程方法,可以产生分辨率完全碰撞避免能力的最佳路径。
translated by 谷歌翻译
本文介绍了一种新的方法,为入境驾驶场景的自动车辆产生最佳轨迹。该方法使用两相优化过程计算轨迹。在第一阶段中,优化过程产生具有不同的曲率的闭形驾驶导向线。在第二阶段,该过程将驱动导向线作为输入输出,输出沿着导向线驾驶的车辆的动态可行,混蛋和时间最佳轨迹。该方法对于在弯曲道路上产生轨迹特别有用,其中车辆需要频繁加速和减速以适应离心机加速限制。
translated by 谷歌翻译
Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
translated by 谷歌翻译
通常,可以将最佳运动计划作为本地和全球执行。在这样的计划中,支持本地或全球计划技术的选择主要取决于环境条件是动态的还是静态的。因此,最适当的选择是与全球计划一起使用本地计划或本地计划。当设计最佳运动计划是本地或全球的时,要记住的关键指标是执行时间,渐近最优性,对动态障碍的快速反应。与其他方法相比,这种计划方法可以更有效地解决上述目标指标,例如路径计划,然后进行平滑。因此,这项研究的最重要目标是分析相关文献,以了解运动计划,特别轨迹计划,问题,当应用于实时生成最佳轨迹的多局部航空车(MAV),影响力(MAV)时如何提出问题。列出的指标。作为研究的结果,轨迹计划问题被分解为一组子问题,详细列出了解决每个问题的方法列表。随后,总结了2010年至2022年最突出的结果,并以时间表的形式呈现。
translated by 谷歌翻译
在自主驾驶的背景下,已知迭代线性二次调节器(ILQR)是在运动计划问题中处理非线性车辆模型的有效方法。特别是,受约束的ILQR算法在不同类型的一般限制下实现运动计划任务方面表现出了值得注意的计算效率结果。但是,受约束的ILQR方法需要在使用对数屏障函数时在第一次迭代时作为先决条件进行可行的轨迹。同样,该方法为纳入快速,高效和有效的优化方法开辟了可能性,以进一步加快优化过程,从而可以成功地满足实时实施的要求。在本文中,定义明确的运动计划问题是在非线性车辆动力学和各种约束下提出的,并利用了乘数的交替方向方法来确定利用ILQR的最佳控制动作。该方法能够在第一次迭代时规避轨迹的可行性要求。然后研究了自动驾驶汽车运动计划的说明性示例。拟议的开发实现了高度计算效率的值得注意的成就。与基于对数屏障函数的约束ILQR算法进行比较,我们提出的方法在三种驾驶场景中,平均计算时间降低了31.93%,38.52%和44.57%;与优化求解器IPOPT相比,我们提出的方法将平均计算时间降低了46.02%,53.26%和88.43%。结果,可以通过我们提出的框架实现实时计算和实施,因此它为公路驾驶任务提供了额外的安全性。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
具有许多移动代理的城市环境的运动计划可以看作是组合问题。通过在左右之后,左右或左后通过障碍物,自动驾驶汽车可以选择执行多个选项。这些组合方面需要在计划框架中考虑到。我们通过提出一种结合轨迹计划和操纵推理的新型计划方法来解决这个问题。我们定义了沿参考曲线的动态障碍的分类,使我们能够提取战术决策序列。我们将纵向和横向运动分开,以加快基于优化的轨迹计划。为了将获得的轨迹集绘制为操纵变体,我们定义了一种语义来描述它们。这使我们能够选择最佳轨迹,同时还可以确保随着时间的推移操纵的一致性。我们证明了我们的方法的能力,即仍被普遍认为是具有挑战性的场景。
translated by 谷歌翻译
为了解决复杂环境中的自主导航问题,本文新呈现了一种有效的运动规划方法。考虑到大规模,部分未知的复杂环境的挑战,精心设计了三层运动规划框架,包括全局路径规划,本地路径优化和时间最佳速度规划。与现有方法相比,这项工作的新颖性是双重的:1)提出了一种新的动作原语的启发式引导剪枝策略,并完全集成到基于国家格子的全球路径规划器中,以进一步提高图表搜索的计算效率,以及2)提出了一种新的软限制局部路径优化方法,其中充分利用底层优化问题的稀疏带系统结构以有效解决问题。我们在各种复杂的模拟场景中验证了我们方法的安全,平滑,灵活性和效率,并挑战真实世界的任务。结果表明,与最近的近期B型zier曲线的状态空间采样方法相比,全球规划阶段,计算效率提高了66.21%,而机器人的运动效率提高了22.87%。我们命名拟议的运动计划框架E $ \ mathrm {^ 3} $拖把,其中3号不仅意味着我们的方法是三层框架,而且还意味着所提出的方法是三个阶段有效。
translated by 谷歌翻译
本文提出了一种新的规划和控制策略,用于赛车场景中的多辆车竞争。所提出的赛车策略在两种模式之间切换。当没有周围的车辆时,使用基于学习的模型预测控制(MPC)轨迹策划器用于保证自助车辆更好地实现了更好的搭接定时。当EGO车辆与其他围绕车辆竞争以超车时,基于优化的策划器通过并行计算产生多个动态可行的轨迹。每个轨迹在MPC配方下进行优化,其具有不同的同型贝塞尔曲线参考路径,横向于周围的车辆之间。选择这些不同的同型轨迹之间的时间最佳轨迹,并使用具有障碍物避免约束的低级MPC控制器来保证系统的安全性能。所提出的算法具有能够生成无碰撞轨迹并跟踪它们,同时提高杠杆定时性能,稳定的低计算复杂性,优于汽车赛车环境的时序和性能中的现有方法。为了展示我们的赛车策略的表现,我们在轨道上模拟了多个随机生成的移动车辆,并测试自我车辆的超越机动。
translated by 谷歌翻译
作为一种完全致动的系统,全向多电流飞机(OMAVS)的机动性比传统不足的多电流飞机具有更灵活的机动性,并且它在复杂环境中的障碍物避免飞行中也具有更大的优势。可以发挥OMAV的潜力的整个自由轨迹。到配置空间的高维度,使设计的轨迹生成算法有效且可扩展是一项挑战。本文旨在实现复杂环境中OMAV的障碍避免计划。 OMAVS的6-DOF轨迹生成框架首次根据几何约束的最小控制工作(MINCO)轨迹生成框架设计。根据一系列凸Polyhedra代表的安全区域,与飞机的整体形状和整体形状和整体形状和整体形状和结合在一起。动态约束,该框架最终生成了无碰撞的最佳6-DOF轨迹。车辆的态度通过立体图投影将参数化为3D矢量。基于凉亭和PX4自动驾驶仪的示意实验是为了验证提议的框架的性能。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
Continuous formulations of trajectory planning problems have two main benefits. First, constraints are guaranteed to be satisfied at all times. Secondly, dynamic obstacles can be naturally considered with time. This paper introduces a novel B-spline based trajectory optimization method for multi-jointed robots that provides a continuous trajectory with guaranteed continuous constraints satisfaction. At the core of this method, B-spline basic operations, like addition, multiplication, and derivative, are rigorously defined and applied for problem formulation. B-spline unique characteristics, such as the convex hull and smooth curves properties, are utilized to reformulate the original continuous optimization problem into a finite-dimensional problem. Collision avoidance with static obstacles is achieved using the signed distance field, while that with dynamic obstacles is accomplished via constructing time-varying separating hyperplanes. Simulation results on various robots validate the effectiveness of the algorithm. In addition, this paper provides experimental validations with a 6-link FANUC robot avoiding static and moving obstacles.
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
本文提出了一种新型的空中栖息轨迹计划方法。与现有工作相比,终端状态和轨迹持续时间可以自适应地调整,而不是预先确定。此外,我们的计划者能够最大程度地减少安全性和动态可行性前提的切向相对速度。此功能在具有低操作性或空间不够的情况下的微型航空机器人上特别值得注意。此外,我们设计了一种灵活的转换策略,以消除终端约束以及减少优化变量。此外,我们考虑了精确的SE(3)运动计划,以确保无人机直到最后一刻才能触及着陆平台。所提出的方法通过棕榈大小的微型航空机器人在船上进行了验证,其推力和力矩(推力重量比1.7)栖息在移动倾斜的表面上。足够的实验结果表明,我们的计划者在20ms内产生最佳轨迹,并以2ms的温暖起步进行补充。
translated by 谷歌翻译
延迟在迅速变化的环境中运行的自主系统的危害安全性,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地和统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力学; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用的优点,我们证明我们的方法适合自动驾驶和自动赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护器。
translated by 谷歌翻译
在本文中,我们在局部不同的牵引条件下解决了处理限制的运动规划和控制问题。我们提出了一种新的解决方案方法,其中通过源自预测摩擦估计来表示预测地平线上的牵引变化。在后退地平线时装解决了约束的有限时间最佳控制问题,施加了这些时变的约束。此外,我们的方法具有集成的采样增强程序,该过程解决了对突然约束改变而产生的局部最小值的不可行性和敏感性的问题,例如,由于突然的摩擦变化。我们在一系列临界情景中验证了沃尔沃FH16重型车辆的提议算法。实验结果表明,通过确保计划运动的动态可行性,通过确保高牵引利用时,牵引自适应运动规划和控制改善了避免事故的车辆的能力,既通过适应低局部牵引。
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译