经验神经切线内核(ENTKS)可以很好地了解给定网络的表示:它们通常比无限宽度NTK的计算价格要低得多。但是,对于具有O输出单元(例如O级分类器)的网络,n输入上的ENTK是尺寸$ no \ times no $,服用$ o((no)^2)$内存,最多可达$ o((否)^3)$计算。因此,大多数现有的应用程序都使用了少数几个近似值之一,该近似值n $ n $内核矩阵,节省了计算的数量级,但没有理由。我们证明,我们称之为“ logits”的近似值,在任何具有宽最终“读取”层的网络时,在初始化时会收敛到真实的ENTK。我们的实验证明了这种近似值的质量,用于各种设置的各种用途。
translated by 谷歌翻译
A longstanding goal in deep learning research has been to precisely characterize training and generalization. However, the often complex loss landscapes of neural networks have made a theory of learning dynamics elusive. In this work, we show that for wide neural networks the learning dynamics simplify considerably and that, in the infinite width limit, they are governed by a linear model obtained from the first-order Taylor expansion of the network around its initial parameters. Furthermore, mirroring the correspondence between wide Bayesian neural networks and Gaussian processes, gradient-based training of wide neural networks with a squared loss produces test set predictions drawn from a Gaussian process with a particular compositional kernel. While these theoretical results are only exact in the infinite width limit, we nevertheless find excellent empirical agreement between the predictions of the original network and those of the linearized version even for finite practically-sized networks. This agreement is robust across different architectures, optimization methods, and loss functions.
translated by 谷歌翻译
我们证明了由例如He等人提出的广泛使用的方法。(2015年)并使用梯度下降对最小二乘损失进行训练并不普遍。具体而言,我们描述了一大批一维数据生成分布,较高的概率下降只会发现优化景观的局部最小值不好,因为它无法将其偏离偏差远离其初始化,以零移动。。事实证明,在这些情况下,即使目标函数是非线性的,发现的网络也基本执行线性回归。我们进一步提供了数值证据,表明在实际情况下,对于某些多维分布而发生这种情况,并且随机梯度下降表现出相似的行为。我们还提供了有关初始化和优化器的选择如何影响这种行为的经验结果。
translated by 谷歌翻译
我们引入了重新定性,这是一种数据依赖性的重新聚集化,将贝叶斯神经网络(BNN)转化为后部的分布,其KL对BNN对BNN的差异随着层宽度的增长而消失。重新定义图直接作用于参数,其分析简单性补充了宽BNN在功能空间中宽BNN的已知神经网络过程(NNGP)行为。利用重新定性,我们开发了马尔可夫链蒙特卡洛(MCMC)后采样算法,该算法将BNN更快地混合在一起。这与MCMC在高维度上的表现差异很差。对于完全连接和残留网络,我们观察到有效样本量高达50倍。在各个宽度上都取得了改进,并在层宽度的重新培训和标准BNN之间的边缘。
translated by 谷歌翻译
由于其宽度趋于无穷大,如果梯度下降下的深度神经网络的行为可以简化和可预测(例如,如果神经切线核(NTK)给出,则如果适当地进行了参数化(例如,NTK参数化)。但是,我们表明,神经网络的标准和NTK参数化不接受可以学习特征的无限宽度限制,这对于训练和转移学习至关重要。我们对标准参数化提出了简单的修改,以允许在极限内进行特征学习。使用 * Tensor程序 *技术,我们为此类限制提供了明确的公式。在Word2Vec和Omniglot上通过MAML进行的几杆学习,这是两个依赖特征学习的规范任务,我们准确地计算了这些限制。我们发现它们的表现都优于NTK基准和有限宽度网络,后者接近无限宽度的特征学习表现,随着宽度的增加。更普遍地,我们对神经网络参数化的自然空间进行分类,该空间概括了标准,NTK和平均场参数化。我们显示1)该空间中的任何参数化都可以接受特征学习或具有内核梯度下降给出的无限宽度训练动力学,但并非两者兼而有之; 2)可以使用Tensor程序技术计算任何此类无限宽度限制。可以在github.com/edwardjhu/tp4上找到我们的实验代码。
translated by 谷歌翻译
How well does a classic deep net architecture like AlexNet or VGG19 classify on a standard dataset such as CIFAR-10 when its "width"-namely, number of channels in convolutional layers, and number of nodes in fully-connected internal layers -is allowed to increase to infinity? Such questions have come to the forefront in the quest to theoretically understand deep learning and its mysteries about optimization and generalization. They also connect deep learning to notions such as Gaussian processes and kernels. A recent paper [Jacot et al., 2018] introduced the Neural Tangent Kernel (NTK) which captures the behavior of fully-connected deep nets in the infinite width limit trained by gradient descent; this object was implicit in some other recent papers. An attraction of such ideas is that a pure kernel-based method is used to capture the power of a fully-trained deep net of infinite width. The current paper gives the first efficient exact algorithm for computing the extension of NTK to convolutional neural nets, which we call Convolutional NTK (CNTK), as well as an efficient GPU implementation of this algorithm. This results in a significant new benchmark for performance of a pure kernel-based method on CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019], and only 6% lower than the performance of the corresponding finite deep net architecture (once batch normalization etc. are turned off). Theoretically, we also give the first non-asymptotic proof showing that a fully-trained sufficiently wide net is indeed equivalent to the kernel regression predictor using NTK.
translated by 谷歌翻译
过度分辨的神经网络概括井,但训练昂贵。理想情况下,人们希望减少其计算成本,同时保留其概括的益处。稀疏的模型培训是实现这一目标的简单和有希望的方法,但随着现有方法与准确性损失,慢速训练运行时的困难或困难,仍然存在挑战,仍然存在困难的挑战。核心问题是,在离散的一组稀疏矩阵上搜索稀疏性掩模是困难和昂贵的。为了解决此问题,我们的主要见解是通过具有称为蝴蝶矩阵产品的固定结构的固定结构来优化优化稀疏矩阵的连续超集。随着蝴蝶矩阵不是硬件效率,我们提出了简单的蝴蝶(块和平坦)的变体来利用现代硬件。我们的方法(像素化蝴蝶)使用基于扁平块蝴蝶和低秩矩阵的简单固定稀疏模式,以缩小大多数网络层(例如,注意,MLP)。我们经验验证了像素化蝴蝶比蝴蝶快3倍,加快培训,以实现有利的准确性效率权衡。在ImageNet分类和Wikitext-103语言建模任务中,我们的稀疏模型训练比致密的MLP - 混频器,视觉变压器和GPT-2媒体更快地训练高达2.5倍,没有精确下降。
translated by 谷歌翻译
The study of feature propagation at initialization in neural networks lies at the root of numerous initialization designs. An assumption very commonly made in the field states that the pre-activations are Gaussian. Although this convenient Gaussian hypothesis can be justified when the number of neurons per layer tends to infinity, it is challenged by both theoretical and experimental works for finite-width neural networks. Our major contribution is to construct a family of pairs of activation functions and initialization distributions that ensure that the pre-activations remain Gaussian throughout the network's depth, even in narrow neural networks. In the process, we discover a set of constraints that a neural network should fulfill to ensure Gaussian pre-activations. Additionally, we provide a critical review of the claims of the Edge of Chaos line of works and build an exact Edge of Chaos analysis. We also propose a unified view on pre-activations propagation, encompassing the framework of several well-known initialization procedures. Finally, our work provides a principled framework for answering the much-debated question: is it desirable to initialize the training of a neural network whose pre-activations are ensured to be Gaussian?
translated by 谷歌翻译
神经切线内核(NTK)是分析神经网络及其泛化界限的训练动力学的强大工具。关于NTK的研究已致力于典型的神经网络体系结构,但对于Hadamard产品(NNS-HP)的神经网络不完整,例如StyleGAN和多项式神经网络。在这项工作中,我们为特殊类别的NNS-HP(即多项式神经网络)得出了有限宽度的NTK公式。我们证明了它们与关联的NTK与内核回归预测变量的等效性,该预测扩大了NTK的应用范围。根据我们的结果,我们阐明了针对外推和光谱偏置,PNN在标准神经网络上的分离。我们的两个关键见解是,与标准神经网络相比,PNN能够在外推方案中拟合更复杂的功能,并承认相应NTK的特征值衰减较慢。此外,我们的理论结果可以扩展到其他类型的NNS-HP,从而扩大了我们工作的范围。我们的经验结果验证了更广泛的NNS-HP类别的分离,这为对神经体系结构有了更深入的理解提供了良好的理由。
translated by 谷歌翻译
我们分析了通过梯度流通过自洽动力场理论训练的无限宽度神经网络中的特征学习。我们构建了确定性动力学阶参数的集合,该参数是内部产物内核,用于在成对的时间点中,每一层中隐藏的单位激活和梯度,从而减少了通过训练对网络活动的描述。这些内核顺序参数共同定义了隐藏层激活分布,神经切线核的演变以及因此输出预测。我们表明,现场理论推导恢复了从Yang和Hu(2021)获得张量程序的无限宽度特征学习网络的递归随机过程。对于深线性网络,这些内核满足一组代数矩阵方程。对于非线性网络,我们提供了一个交替的采样过程,以求助于内核顺序参数。我们提供了与各种近似方案的自洽解决方案的比较描述。最后,我们提供了更现实的设置中的实验,这些实验表明,在CIFAR分类任务上,在不同宽度上保留了CNN的CNN的损耗和内核动力学。
translated by 谷歌翻译
我们提出了一种新方法,用于近似于基于假设标记的候选数据点进行重新培训的主动学习获取策略。尽管这通常与深层网络不可行,但我们使用神经切线内核来近似重新进行重新培训的结果,并证明该近似值即使在主动学习设置中也无效 - 近似于“ look-aead abead”选择标准,所需的计算要少得多。 。这也使我们能够进行顺序的主动学习,即在流态中更新模型,而无需在添加每个新数据点后使用SGD重新训练模型。此外,我们的查询策略可以更好地理解模型的预测将如何通过与标准(“近视”)标准相比,通过大幅度击败其他查看策略,并获得相等或更好的性能,并取得了相等或更好的性能。基于池的主动学习中的几个基准数据集上的最新方法。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译
过度参数化神经网络(NN)的损失表面具有许多全球最小值,却零训练误差。我们解释了标准NN训练程序的常见变体如何改变获得的最小化器。首先,我们明确说明了强烈参数化的NN初始化的大小如何影响最小化器,并可能恶化其最终的测试性能。我们提出了限制这种效果的策略。然后,我们证明,对于自适应优化(例如Adagrad),所获得的最小化器通常与梯度下降(GD)最小化器不同。随机迷你批次训练,即使在非自适应情况下,GD和随机GD基本相同的最小化器,这种自适应最小化器也会进一步改变。最后,我们解释说,这些效果仍然与较少参数化的NN相关。尽管过度参数具有其好处,但我们的工作强调,它会导致参数化模型缺乏错误来源。
translated by 谷歌翻译
神经体系结构搜索(NAS)促进了神经体系结构的自动发现,从而实现了图像识别的最新精度。尽管NAS取得了进展,但到目前为止,NAS对理论保证几乎没有关注。在这项工作中,我们研究了NAS在统一框架下的概括属性,从而实现(深)层跳过连接搜索和激活功能搜索。为此,我们从搜索空间(包括混合的激活功能,完全连接和残留的神经网络)的(包括)有限宽度方向上得出了神经切线核的最小特征值的下(和上)边界。由于在统一框架下的各种体系结构和激活功能的耦合,我们的分析是不平凡的。然后,我们利用特征值边界在随机梯度下降训练中建立NAS的概括误差界。重要的是,我们从理论上和实验上展示了衍生结果如何指导NAS,即使在没有培训的情况下,即使在没有培训的情况下,也可以根据我们的理论进行无训练的算法。因此,我们的数值验证阐明了NAS计算有效方法的设计。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
深度重新结合因实现最新的机器学习任务而被认可。但是,这些体系结构的出色性能取决于培训程序,需要精心制作以避免消失或爆炸梯度,尤其是随着深度$ l $的增加。关于如何减轻此问题,尚无共识,尽管广泛讨论的策略在于将每一层的输出缩放为$ \ alpha_l $。我们在概率环境中显示标准I.I.D.初始化,唯一的非平凡动力学是$ \ alpha_l = 1/\ sqrt {l} $(其他选择导致爆炸或身份映射)。该缩放因子在连续的时间限制中对应于神经随机微分方程,这与广泛的解释相反,即深度重新连接是神经普通微分方程的离散化。相比之下,在后一种制度中,具有特定相关初始化和$ \ alpha_l = 1/l $获得稳定性。我们的分析表明,与层指数的函数之间的缩放比例和规律性之间存在很强的相互作用。最后,在一系列实验中,我们表现出由这两个参数驱动的连续范围,这在训练之前和之后会共同影响性能。
translated by 谷歌翻译
一项开创性的工作[Jacot等,2018]表明,在特定参数化下训练神经网络等同于执行特定的内核方法,因为宽度延伸到无穷大。这种等效性为将有关内核方法的丰富文献结果应用于神经网的结果开辟了一个有希望的方向,而神经网络很难解决。本调查涵盖了内核融合的关键结果,因为宽度进入无穷大,有限宽度校正,应用以及对相应方法的局限性的讨论。
translated by 谷歌翻译
为了理论上了解训练有素的深神经网络的行为,有必要研究来自随机初始化的梯度方法引起的动态。然而,这些模型的非线性和组成结构使得这些动态难以分析。为了克服这些挑战,最近出现了大宽度的渐近学作为富有成效的观点,并导致了对真实世界的深网络的实用洞察。对于双层神经网络,已经通过这些渐近学理解,训练模型的性质根据初始随机权重的规模而变化,从内核制度(大初始方差)到特征学习制度(对于小初始方差)。对于更深的网络,更多的制度是可能的,并且在本文中,我们详细研究了与神经网络的“卑鄙字段”限制相对应的“小”初始化的特定选择,我们称之为可分配的参数化(IP)。首先,我们展示了标准I.I.D.零平均初始化,具有多于四个层的神经网络的可集参数,从无限宽度限制的静止点开始,并且不会发生学习。然后,我们提出了各种方法来避免这种琐碎的行为并详细分析所得到的动态。特别是,这些方法中的一种包括使用大的初始学习速率,并且我们表明它相当于最近提出的最大更新参数化$ \ mu $ p的修改。我们将结果与图像分类任务的数值实验确认,其另外显示出在尚未捕获的激活功能的各种选择之间的行为中的强烈差异。
translated by 谷歌翻译
鉴于密集的浅色神经网络,我们专注于迭代创建,培训和组合随机选择的子网(代理函数),以训练完整模型。通过仔细分析$ i)$ Subnetworks的神经切线内核,II美元)$代理职能'梯度,以及$ iii)$我们如何对替代品函数进行采样并结合训练错误的线性收敛速度 - 内部一个错误区域 - 对于带有回归任务的Relu激活的过度参数化单隐藏层Perceptron。我们的结果意味着,对于固定的神经元选择概率,当我们增加代理模型的数量时,误差项会减少,并且随着我们增加每个所选子网的本地训练步骤的数量而增加。考虑的框架概括并提供了关于辍学培训,多样化辍学培训以及独立的子网培训的新见解;对于每种情况,我们提供相应的收敛结果,作为我们主要定理的冠状动脉。
translated by 谷歌翻译