磁共振成像(MRI)扫描很耗时且不稳定,因为患者长时间仍在狭窄的空间中。为了减少扫描时间,一些专家已经尝试了不足采样的K空间,试图使用深度学习来预测完全采样的结果。这些研究报告说,可以节省多达20到30分钟的时间,这需要一个小时或更长时间。然而,这些研究都没有探索使用掩盖图像建模(MIM)来预测MRI K空间缺失部分的可能性。这项研究利用了11161个从Facebook的FastMRI数据集中重建的MRI和膝关节MRI图像的K空间。这使用基线移位窗口(SWIN)和视觉变压器体系结构测试了现有模型的修改版本,该窗口和视觉变压器体系结构可在未采样的K空间上使用MIM来预测完整的K空间,从而预测完整的MRI图像。使用Pytorch和Numpy库进行修改,并发布到GitHub存储库。模型重建K空间图像后,应用了基本的傅立叶变换来确定实际的MRI图像。一旦模型达到稳定状态,对超参数的实验有助于实现重建图像的精确精度。通过L1丢失,梯度归一化和结构相似性值评估了该模型。该模型产生的重建图像,L1损耗值平均为<0.01,训练完成后梯度归一化值<0.1。重建的K空间对训练和验证的结构相似性值均超过99%,并通过完全采样的K空间进行验证,而验证损失在0.01以下不断减少。这些数据强烈支持算法可用于MRI重建的想法,因为它们表明该模型的重建图像与原始的,完全采样的K空间非常吻合。
translated by 谷歌翻译
The development of deep learning models in medical image analysis is majorly limited by the lack of large-sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solving medical image analysis problems. However, most of the current unsupervised learning methods need to be applied to large datasets. To make unsupervised learning applicable to small datasets, we proposed Swin MAE, which is a masked autoencoder with Swin Transformer as its backbone. Even on a dataset of only a few thousand medical images and without using any pre-trained models, Swin MAE is still able to learn useful semantic features purely from images. It can equal or even slightly outperform the supervised model obtained by Swin Transformer trained on ImageNet in terms of the transfer learning results of downstream tasks. The code will be publicly available soon.
translated by 谷歌翻译
随着计算机技术的开发,人工智能已经出现了各种模型。在自然语言处理(NLP)成功之后,变压器模型已应用于计算机视觉(CV)。放射科医生在当今迅速发展的医疗领域中继续面临多重挑战,例如增加工作量和增加的诊断需求。尽管以前有一些常规的肺癌检测方法,但仍需要提高其准确性,尤其是在现实的诊断情况下。本文创造性地提出了一种基于有效变压器的分割方法,并将其应用于医学图像分析。该算法通过分析肺癌数据来完成肺癌分类和细分的任务,并旨在为医务人员提供有效的技术支持。此外,我们在各个方面进行了评估并比较了结果。对于分类任务,通过定期培训和SWIN-B在两项决议中通过预训练的最高准确性可高达82.3%。对于分割任务,我们使用预训练来帮助模型提高实验的准确性。这三个模型的准确性达到95%以上。实验表明该算法可以很好地应用于肺癌分类和分割任务。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
为了在医学成像研究中保持标准,图像应具有必要的图像质量,以进行潜在的诊断使用。尽管基于CNN的方法用于评估图像质量,但仍可以从准确性方面提高其性能。在这项工作中,我们通过使用SWIN Transformer来解决此问题,这改善了导致医疗图像质量降解的质量质量差分类性能。我们在胸部X射线(Object-CXR)和心脏MRI上的左心室流出路分类问题(LVOT)上测试了胸部X射线(Object-CXR)和左心室流出路分类问题的方法。虽然我们在Object-CXR和LVOT数据集中获得了87.1%和95.48%的分类精度,但我们的实验结果表明,SWIN Transformer的使用可以改善对象CXR分类性能,同时获得LVOT数据集的可比性能。据我们所知,我们的研究是医学图像质量评估的第一个Vision Transformer应用程序。
translated by 谷歌翻译
最近,蒙面图像建模(MIM)由于其能力从大量未标记的数据中学习而引起了人们的关注,并且已被证明对涉及自然图像的各种视觉任务有效。同时,由于未标记的图像的数量高,预计3D医学图像中的自我监督学习的潜力预计将是巨大的,以及质量标签的费用和困难。但是,MIM对医学图像的适用性仍然不确定。在本文中,我们证明了掩盖的图像建模方法还可以推进3D医学图像分析,除了自然图像。我们研究掩盖图像建模策略如何从3D医学图像分割的角度利用性能作为代表性的下游任务:i)与天真的对比度学习相比,蒙版的图像建模方法可以加快监督培训的收敛性,甚至更快(1.40美元$ \ times $ \ times $ $ $ )并最终产生更高的骰子分数; ii)预测具有较高掩盖比和相对较小的贴片大小的原始体素值是用于医学图像建模的非平凡的自我监督借口任务; iii)重建的轻质解码器或投影头设计对于3D医学图像上的掩盖图像建模非常有力,该图像加快了训练并降低成本; iv)最后,我们还研究了在不同的实际情况下使用不同图像分辨率和标记的数据比率的MIM方法的有效性。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
深度学习和计算机视觉的最新进展减轻了许多瓶颈,从而使算法无标记,并且性能更好。具体而言,变形金刚提供了图像的全球视角,该图像卷积神经网络(CNN)缺乏设计。在这里,我们介绍了跨体系结构自学,这是一种新颖的自我监督学习方法,同时利用了变形金刚和CNN,同时也可以通过易于可用的云服务在计算上访问。与现有的最先进的自我监督学习方法相比,我们从经验上显示了经过CASS训练的CNN,而Transformers则使用100%标记的数据,平均获得8.5%,具有10%标记的数据,为11.5%,1.5%,1百分比在三个不同数据集中标记的数据。值得注意的是,一个被使用的数据集包括自身免疫性疾病的组织病理学幻灯片,这是医学成像中代表性不足的主题,并且数据最少。此外,我们的发现表明,就训练时间而言,CASS的效率是其他最先进方法的两倍。
translated by 谷歌翻译
Cross-modality magnetic resonance (MR) image synthesis aims to produce missing modalities from existing ones. Currently, several methods based on deep neural networks have been developed using both source- and target-modalities in a supervised learning manner. However, it remains challenging to obtain a large amount of completely paired multi-modal training data, which inhibits the effectiveness of existing methods. In this paper, we propose a novel Self-supervised Learning-based Multi-scale Transformer Network (SLMT-Net) for cross-modality MR image synthesis, consisting of two stages, \ie, a pre-training stage and a fine-tuning stage. During the pre-training stage, we propose an Edge-preserving Masked AutoEncoder (Edge-MAE), which preserves the contextual and edge information by simultaneously conducting the image reconstruction and the edge generation. Besides, a patch-wise loss is proposed to treat the input patches differently regarding their reconstruction difficulty, by measuring the difference between the reconstructed image and the ground-truth. In this case, our Edge-MAE can fully leverage a large amount of unpaired multi-modal data to learn effective feature representations. During the fine-tuning stage, we present a Multi-scale Transformer U-Net (MT-UNet) to synthesize the target-modality images, in which a Dual-scale Selective Fusion (DSF) module is proposed to fully integrate multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Moreover, we use the pre-trained encoder as a feature consistency module to measure the difference between high-level features of the synthesized image and the ground truth one. Experimental results show the effectiveness of the proposed SLMT-Net, and our model can reliably synthesize high-quality images when the training set is partially unpaired. Our code will be publicly available at https://github.com/lyhkevin/SLMT-Net.
translated by 谷歌翻译
自我监督学习的一个重要目标是使模型预训练能够从几乎无限的数据中受益。但是,一种最近变得流行的方法,即掩盖图像建模(MIM),被怀疑无法从较大的数据中受益。在这项工作中,我们通过广泛的实验打破了这一误解,数据量表从10 \%imagenet-1k到完整的Imagenet-22K,型号的尺寸从4,900万到10亿,培训长度从125k迭代到500k迭代迭代范围不等。我们的研究表明:(i)蒙版的图像建模也要求对较大的数据进行要求。我们观察到,非常大的模型被相对较小的数据过度。 (ii)培训的时间长度。接受掩盖图像建模训练的大型模型可以从更多的数据中受益,并具有更长的培训。 (iii)预训练中的验证损失是衡量模型在多个任务上进行微调的表现的好指标。该观察结果使我们能够预先评估预训练的模型,而无需对下游任务进行昂贵的试用和错误评估。我们希望我们的发现能够从缩放能力方面提高对蒙版图像建模的理解。
translated by 谷歌翻译
建立具有可信赖性的AI模型非常重要,尤其是在医疗保健等受监管的地区。在解决Covid-19时,以前的工作将卷积神经网络用作骨干建筑,该骨干建筑物易于过度宣告和过度自信做出决策,使它们不那么值得信赖 - 在医学成像背景下的关键缺陷。在这项研究中,我们提出了一种使用视觉变压器的功能学习方法,该方法使用基于注意力的机制,并检查变形金刚作为医学成像的新骨干结构的表示能力。通过对COVID-19胸部X光片进行分类的任务,我们研究了概括能力是否仅从视觉变形金刚的建筑进步中受益。通过使用“信任评分”计算和视觉解释性技术,对模型的可信度进行了定量和定性评估。我们得出的结论是,基于注意力的特征学习方法在建立可信赖的医疗保健深度学习模型方面有希望。
translated by 谷歌翻译
根据诊断各种疾病的胸部X射线图像的可观增长,以及收集广泛的数据集,使用深神经网络进行了自动诊断程序,已经占据了专家的思想。计算机视觉中的大多数可用方法都使用CNN主链来获得分类问题的高精度。然而,最近的研究表明,在NLP中成为事实上方法的变压器也可以优于许多基于CNN的模型。本文提出了一个基于SWIN变压器的多标签分类深模型,作为实现最新诊断分类的骨干。它利用了头部体系结构来利用多层感知器(也称为MLP)。我们评估了我们的模型,该模型称为“ Chest X-Ray14”,最广泛,最大的X射线数据集之一,该数据集由30,000多名14例著名胸部疾病的患者组成100,000多个额叶/背景图像。我们的模型已经用几个数量的MLP层用于头部设置,每个模型都在所有类别上都达到了竞争性的AUC分数。胸部X射线14的全面实验表明,与以前的SOTA平均AUC为0.799相比,三层头的平均AUC得分为0.810,其平均AUC得分为0.810。我们建议对现有方法进行公平基准测试的实验设置,该设置可以用作未来研究的基础。最后,我们通过确认所提出的方法参与胸部的病理相关区域,从而跟进了结果。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
The combination of transformers and masked image modeling (MIM) pre-training framework has shown great potential in various vision tasks. However, the pre-training computational budget is too heavy and withholds the MIM from becoming a practical training paradigm. This paper presents FastMIM, a simple and generic framework for expediting masked image modeling with the following two steps: (i) pre-training vision backbones with low-resolution input images; and (ii) reconstructing Histograms of Oriented Gradients (HOG) feature instead of original RGB values of the input images. In addition, we propose FastMIM-P to progressively enlarge the input resolution during pre-training stage to further enhance the transfer results of models with high capacity. We point out that: (i) a wide range of input resolutions in pre-training phase can lead to similar performances in fine-tuning phase and downstream tasks such as detection and segmentation; (ii) the shallow layers of encoder are more important during pre-training and discarding last several layers can speed up the training stage with no harm to fine-tuning performance; (iii) the decoder should match the size of selected network; and (iv) HOG is more stable than RGB values when resolution transfers;. Equipped with FastMIM, all kinds of vision backbones can be pre-trained in an efficient way. For example, we can achieve 83.8%/84.1% top-1 accuracy on ImageNet-1K with ViT-B/Swin-B as backbones. Compared to previous relevant approaches, we can achieve comparable or better top-1 accuracy while accelerate the training procedure by $\sim$5$\times$. Code can be found in https://github.com/ggjy/FastMIM.pytorch.
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
在为医疗保健领域开发监督的机器学习解决方案时,具有高质量地面真实标签的大规模数据的可用性是一个挑战。尽管临床工作流程中的数字数据量正在增加,但大多数数据都分布在临床站点上并受到保护以确保患者隐私。放射学读数和处理大型临床数据给可用资源带来了重大负担,这是机器学习和人工智能发挥关键作用的地方。用于肌肉骨骼(MSK)诊断的磁共振成像(MRI)是一个例子,其中扫描具有大量信息,但需要大量时间阅读和标记。自我监督的学习(SSL)可以是处理缺乏地面真相标签的解决方案,但通常需要在训练阶段进行大量培训数据。本文中,我们提出了一个基于切片的自制深度学习框架(SB-SSL),这是一种基于切片的新型范式,用于使用膝盖MRI扫描对异常进行分类。我们表明,在有限数量的情况下(<1000),我们提出的框架能够以89.17%的精度识别前交叉韧带撕裂,而AUC为0.954,不超过最先进的情况,而无需使用外部数据。在训练期间。这表明我们提出的框架适用于有限的数据制度中的SSL。
translated by 谷歌翻译
本文介绍了Simmim,这是一个简单的蒙面图像建模框架。我们在没有特殊设计的情况下简化了最近提出的相关方法,例如通过离散VAE或聚类的块状掩蔽和令牌化。要研究蒙版图像建模任务学习良好的表示,我们系统地研究了我们框架中的主要组成部分,并发现每个组件的简单设计揭示了非常强烈的表示学习性能:1)用中等的输入图像随机掩蔽输入图像大型蒙面贴片尺寸(例如,32)进行了强大的文本前任务; 2)通过直接回归预测RGB值的原始像素不比具有复杂设计的补丁分类方法更差; 3)预测头可以像线性层一样光,性能比较重的形式更差。使用VIT-B,我们的方法通过预训练在此数据集上进行预培训,我们的方法在ImageNet-1K上实现了83.8%的精细调整精度,超过了以前最佳方法+ 0.6%。当应用于大约6.5亿参数的更大模型时,SwinV2-H,它在Imagenet-1K上使用Imagenet-1K数据实现了87.1%的前1个精度。我们还利用这种方法来促进3B模型(SWINV2-G)的培训,比以前的实践中的数据减少40美元,我们在四个代表性视觉基准上实现了最先进的。代码和模型将在https://github.com/microsoft/simmim公开使用。
translated by 谷歌翻译
与2020年相比,由于注意力和嗜睡的增加,汽车撞车事故增长了20%。昏昏欲睡和分心的驾驶是所有车祸的45%的原因。作为减少昏昏欲睡和分心的驾驶的一种手段,使用计算机视觉的检测方法可以设计为低成本,准确和微创。这项工作调查了视觉变压器以优于3D-CNN的最先进准确性。两个独立的变压器接受了嗜睡和分心。昏昏欲睡的视频变压器模型接受了全国Tsing-hua大学昏昏欲睡的驾驶数据集(NTHU-DDD)的培训,其中有一个视频Swin Transformer模型,可在两个类别上进行10个时代 - 昏昏欲睡和非der脚模拟10.5个小时。分散注意力的视频变压器在驾驶员监视数据集(DMD)上接受了带有视频SWIN变压器的50个时代的培训,该时期超过9个分心相关的类。嗜睡模型的准确性达到44%,测试集的损失值高,表明过度拟合和模型性能差。过度拟合表明有限的培训数据和应用模型体系结构缺乏可量化的参数。分散注意力的模型优于DMD上的最新模型,达到97.5%,表明有足够的数据和强大的体系结构,变压器适合不适合驾驶检测。未来的研究应使用较新的模型,例如Tokenlearner来实现更高的准确性和效率,合并现有数据集以扩展以检测酒后驾车和道路愤怒,以创建全面的解决方案,以防止交通崩溃,并部署功能性的原型,以革新自动安全安全性行业。
translated by 谷歌翻译
本文研究了基于图像的蒙版自动编码器(MAE)的简单扩展,以从音频谱图中学习自我监督的表示。在MAE中的变压器编码器编码器设计之后,我们的Audio-MAE首先编码具有较高遮罩比的音频谱图斑块,仅通过编码器层馈入非掩盖令牌。然后,解码器重新订购并解码编码的上下文,并用掩码令牌填充,以重建输入频谱图。我们发现将局部窗户注意力纳入解码器是有益的,因为音频谱图在当地时间和频带中高度相关。然后,我们在目标数据集上以较低的掩模比微调编码器。从经验上讲,音频MAE在六个音频和语音分类任务上设定了新的最先进的性能,超过了使用外部监督预训练的其他最新模型。代码和模型将在https://github.com/facebookresearch/audiomae上。
translated by 谷歌翻译