为了在医学成像研究中保持标准,图像应具有必要的图像质量,以进行潜在的诊断使用。尽管基于CNN的方法用于评估图像质量,但仍可以从准确性方面提高其性能。在这项工作中,我们通过使用SWIN Transformer来解决此问题,这改善了导致医疗图像质量降解的质量质量差分类性能。我们在胸部X射线(Object-CXR)和心脏MRI上的左心室流出路分类问题(LVOT)上测试了胸部X射线(Object-CXR)和左心室流出路分类问题的方法。虽然我们在Object-CXR和LVOT数据集中获得了87.1%和95.48%的分类精度,但我们的实验结果表明,SWIN Transformer的使用可以改善对象CXR分类性能,同时获得LVOT数据集的可比性能。据我们所知,我们的研究是医学图像质量评估的第一个Vision Transformer应用程序。
translated by 谷歌翻译
随着计算机技术的开发,人工智能已经出现了各种模型。在自然语言处理(NLP)成功之后,变压器模型已应用于计算机视觉(CV)。放射科医生在当今迅速发展的医疗领域中继续面临多重挑战,例如增加工作量和增加的诊断需求。尽管以前有一些常规的肺癌检测方法,但仍需要提高其准确性,尤其是在现实的诊断情况下。本文创造性地提出了一种基于有效变压器的分割方法,并将其应用于医学图像分析。该算法通过分析肺癌数据来完成肺癌分类和细分的任务,并旨在为医务人员提供有效的技术支持。此外,我们在各个方面进行了评估并比较了结果。对于分类任务,通过定期培训和SWIN-B在两项决议中通过预训练的最高准确性可高达82.3%。对于分割任务,我们使用预训练来帮助模型提高实验的准确性。这三个模型的准确性达到95%以上。实验表明该算法可以很好地应用于肺癌分类和分割任务。
translated by 谷歌翻译
The Coronavirus Disease 2019 (COVID-19) has spread globally and caused serious damage. Chest X-ray images are widely used for COVID-19 diagnosis and the Artificial Intelligence method can increase efficiency and accuracy. In the Challenge of Chest XR COVID-19 detection in Ethics and Explainability for Responsible Data Science (EE-RDS) conference 2021, we proposed a method that combined Swin Transformer and Transformer in Transformer to classify chest X-ray images as three classes: COVID-19, Pneumonia, and Normal (healthy) and achieved 0.9475 accuracies on the test set.
translated by 谷歌翻译
根据诊断各种疾病的胸部X射线图像的可观增长,以及收集广泛的数据集,使用深神经网络进行了自动诊断程序,已经占据了专家的思想。计算机视觉中的大多数可用方法都使用CNN主链来获得分类问题的高精度。然而,最近的研究表明,在NLP中成为事实上方法的变压器也可以优于许多基于CNN的模型。本文提出了一个基于SWIN变压器的多标签分类深模型,作为实现最新诊断分类的骨干。它利用了头部体系结构来利用多层感知器(也称为MLP)。我们评估了我们的模型,该模型称为“ Chest X-Ray14”,最广泛,最大的X射线数据集之一,该数据集由30,000多名14例著名胸部疾病的患者组成100,000多个额叶/背景图像。我们的模型已经用几个数量的MLP层用于头部设置,每个模型都在所有类别上都达到了竞争性的AUC分数。胸部X射线14的全面实验表明,与以前的SOTA平均AUC为0.799相比,三层头的平均AUC得分为0.810,其平均AUC得分为0.810。我们建议对现有方法进行公平基准测试的实验设置,该设置可以用作未来研究的基础。最后,我们通过确认所提出的方法参与胸部的病理相关区域,从而跟进了结果。
translated by 谷歌翻译
建立具有可信赖性的AI模型非常重要,尤其是在医疗保健等受监管的地区。在解决Covid-19时,以前的工作将卷积神经网络用作骨干建筑,该骨干建筑物易于过度宣告和过度自信做出决策,使它们不那么值得信赖 - 在医学成像背景下的关键缺陷。在这项研究中,我们提出了一种使用视觉变压器的功能学习方法,该方法使用基于注意力的机制,并检查变形金刚作为医学成像的新骨干结构的表示能力。通过对COVID-19胸部X光片进行分类的任务,我们研究了概括能力是否仅从视觉变形金刚的建筑进步中受益。通过使用“信任评分”计算和视觉解释性技术,对模型的可信度进行了定量和定性评估。我们得出的结论是,基于注意力的特征学习方法在建立可信赖的医疗保健深度学习模型方面有希望。
translated by 谷歌翻译
视觉变形金刚(VIT)S表现出可观的全球和本地陈述的自我监督学习表现,可以转移到下游应用程序。灵感来自这些结果,我们介绍了一种新的自我监督学习框架,具有用于医学图像分析的定制代理任务。具体而言,我们提出:(i)以新的3D变压器为基础的型号,被称为往返变压器(Swin Unet),具有分层编码器,用于自我监督的预训练; (ii)用于学习人类解剖学潜在模式的定制代理任务。我们展示了来自各种身体器官的5,050个公共可用的计算机断层扫描(CT)图像的提出模型的成功预培训。通过微调超出颅穹窿(BTCV)分割挑战的预先调整训练模型和来自医疗细分牌组(MSD)数据集的分割任务,通过微调训练有素的模型来验证我们的方法的有效性。我们的模型目前是MSD和BTCV数据集的公共测试排行榜上的最先进的(即第1号)。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
腮腺肿瘤约占头颈肿瘤的2%至10%。术前肿瘤定位,鉴别诊断以及随后选择适当的腮腺肿瘤治疗方法。然而,这些肿瘤的相对稀有性和高度分散的组织类型使基于术前放射线学对这种肿瘤病变的细微差异诊断造成了未满足的需求。最近,深度学习方法发展迅速,尤其是变形金刚在计算机视觉中击败了传统的卷积神经网络。为计算机视觉任务提出了许多新的基于变压器的网络。在这项研究中,收集了多中心多模束MRI图像。使用了基于变压器的SWIN-UNET。将搅拌,T1和T2模态的MRI图像合并为三通道数据以训练网络。我们实现了对腮腺和肿瘤感兴趣区域的分割。测试集上的模型DSC为88.63%,MPA为99.31%,MIOU为83.99%,HD为3.04。然后在本文中设计了一系列比较实验,以进一步验证算法的分割性能。
translated by 谷歌翻译
特征图的分辨率对于医学图像分割至关重要。大多数现有用于医疗图像分割的基于变压器的网络都是U-NET样体系结构,其中包含一个编码器,该编码器利用一系列变压器块将输入医疗图像从高分辨率表示形式转换为低分辨率特征图和解码器这逐渐从低分辨率特征图中恢复了高分辨率表示。与以前的研究不同,在本文中,我们利用高分辨率网络(HRNET)的网络设计样式,用变压器块替换卷积层,并从变压器块生成的不同分辨率特征图中连续交换信息。本文介绍的新基于变压器的网络表示为高分辨率SWIN Transformer网络(HRSTNET)。广泛的实验表明,HRSTNET可以与基于最新的变压器类似于脑肿瘤分割的U-NET样结构(BRATS)2021和Medical Sementation Decathlon的肝数据集实现可比的性能。 HRSTNET代码将在https://github.com/auroua/hrstnet上公开获得。
translated by 谷歌翻译
在卷积神经网络(CNN)的动力下,医学图像分类迅速发展。由于卷积内核的接受场的固定尺寸,很难捕获医学图像的全局特征。尽管基于自发的变压器可以对远程依赖性进行建模,但它具有很高的计算复杂性,并且缺乏局部电感偏见。许多研究表明,全球和本地特征对于图像分类至关重要。但是,医学图像具有许多嘈杂,分散的特征,类内的变化和类间的相似性。本文提出了三个分支分层的多尺度特征融合网络结构,称为医学图像分类为新方法。它可以融合多尺度层次结构的变压器和CNN的优势,而不会破坏各自的建模,从而提高各种医学图像的分类精度。局部和全局特征块的平行层次结构旨在有效地提取各种语义尺度的本地特征和全局表示,并灵活地在不同的尺度上建模,并与图像大小相关的线性计算复杂性。此外,自适应分层特征融合块(HFF块)旨在全面利用在不同层次级别获得的功能。 HFF块包含空间注意力,通道注意力,残留的倒置MLP和快捷方式,以在每个分支的各个规模特征之间适应融合语义信息。我们在ISIC2018数据集上提出的模型的准确性比基线高7.6%,COVID-19数据集的准确性为21.5%,Kvasir数据集的准确性为10.4%。与其他高级模型相比,HIFUSE模型表现最好。我们的代码是开源的,可从https://github.com/huoxiangzuo/hifuse获得。
translated by 谷歌翻译
预计未来几十年的全球粮食不安全将加速气候变化率和人口迅速增加。在这种静脉中,重要的是在每种饮食生产水平上消除效率低下。最近深入学习的进步可以帮助降低这种效率低下,但他们的申请尚未成为整个行业的主流,以大规模的规模诱导经济成本。为此,已将现代技术(如CNNS(卷积神经网络)应用于RPQD(原始产生质量检测)任务。另一方面,变压器在其他方式中的视野中的成功首次亮相使我们能够在RPQD中预计这些基于变压器的模型更好的性能。在这项工作中,我们专门调查了最近的最先进的水流(移位的Windows)变压器,这些变压器可以在窗口和窗口间的方式中计算自我关注。我们将Swin变压器与CNN模型进行比较四个RPQD图像数据集,每个CNN模型都包含不同种类的生成:水果和蔬菜,鱼类,猪肉和牛肉。我们观察到Swin Transformer不仅实现了更好或更有竞争力的性能,而且还具有数据和计算效率,使其成为现实世界的实际部署的理想选择。据我们所知,这是第一个对RPQD任务的大规模实证研究,我们希望在未来的作品中更加关注。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
变压器长期以来一直在自然语言处理(NLP)领域主导。最近,基于变压器的方法被采用到计算机视觉(CV)字段中,并显示出令人鼓舞的结果。作为简历字段的重要分支,医学图像分析正确地加入了基于变压器的方法的波。在本文中,我们说明了注意机制的原理以及变压器的详细结构,并描述了如何将变压器采用到CV领域中。我们按照不同的CV任务序列组织了基于变压器的医学图像分析应用程序,包括分类,分割,合成,注册,定位,检测,字幕和降解。对于主流分类和分割任务,我们基于不同的医学成像方式进一步划分了相应的作品。我们在工作中包括13种模式和二十多个物体。我们还可以看到每种方式和对象占据的比例,以给读者一个直观的印象。我们希望我们的工作能够为未来的基于变压器的医学图像分析的发展做出贡献。
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
变压器在计算机视觉中的成功吸引了医学成像社区越来越多的关注。特别是对于医学图像细分,已经介绍了许多基于卷积神经网络(CNN)和变压器的出色混合体系结构,并取得了令人印象深刻的性能。但是,将模块化变压器嵌入CNN中的大多数方法都难以发挥其全部潜力。在本文中,我们提出了一种新型的医学图像分割的混合体系结构,称为Phtrans,该架构可与主要构建基块中的变形金刚和CNN杂交,以产生来自全球和本地特征的层次结构表示,并适应性地汇总它们,旨在完全利用其优势以获得更好的优势。细分性能。具体而言,phtrans遵循U形编码器编码器设计,并在深层阶段引入平行的Hybird模块,其中卷积块和经过修改的3D SWIN变压器分别学习本地特征和全局依赖性,然后统一尺寸,统一尺寸输出以实现特征聚合。超出颅库和自动化心脏诊断挑战数据集以外的多ATLA标签的广泛实验结果证实了其有效性,始终超过了最先进的方法。该代码可在以下网址获得:https://github.com/lseventeen/phtrans。
translated by 谷歌翻译
目的:在手术规划之前,CT图像中肝血管的分割是必不可少的,并引起了医学图像分析界的广泛兴趣。由于结构复杂,对比度背景下,自动肝脏血管分割仍然特别具有挑战性。大多数相关的研究采用FCN,U-Net和V-Net变体作为骨干。然而,这些方法主要集中在捕获多尺度局部特征,这可能导致由于卷积运营商有限的地区接收领域而产生错误分类的体素。方法:我们提出了一种强大的端到端血管分割网络,通过将SWIN变压器扩展到3D并采用卷积和自我关注的有效组合,提出了一种被称为电感偏置的多头注意船网(IBIMHAV-NET)的稳健端到端血管分割网络。在实践中,我们介绍了Voxel-Wise嵌入而不是修补程序嵌入,以定位精确的肝脏血管素,并采用多尺度卷积运营商来获得局部空间信息。另一方面,我们提出了感应偏置的多头自我关注,其学习从初始化的绝对位置嵌入的归纳偏置相对位置嵌入嵌入。基于此,我们可以获得更可靠的查询和键矩阵。为了验证我们模型的泛化,我们测试具有不同结构复杂性的样本。结果:我们对3Dircadb数据集进行了实验。四种测试病例的平均骰子和敏感性为74.8%和77.5%,超过现有深度学习方法的结果和改进的图形切割方法。结论:拟议模型IBIMHAV-Net提供一种具有交错架构的自动,精确的3D肝血管分割,可更好地利用CT卷中的全局和局部空间特征。它可以进一步扩展到其他临床数据。
translated by 谷歌翻译
计算机断层扫描(CT)成像对于诊断各种疾病可能非常实用。但是,CT图像的性质更加多样化,因为CT扫描的分辨率和数量由机器及其设置确定。传统的深度学习模型很难挠痒痒,因为深神经网络的基本要求是输入数据的一致形状。在本文中,我们提出了一种新颖,有效的两步方法,以彻底解决Covid-19症状分类的问题。首先,通过常规骨干网络提取CT扫描的每个切片的语义特征嵌入。然后,我们提出了长期的短期记忆(LSTM)和基于变压器的子网络来处理时间特征学习,从而导致时空特征表示学习。以这种方式,拟议的两步LSTM模型可以防止过度拟合,并提高性能。全面的实验表明,提出的两步方法不仅显示出出色的性能,而且可以互相补偿。更具体地说,两步LSTM模型的假阴性速率较低,而2步SWIN模型的假阳性速率较低。总而言之,建议模型合奏可以在现实世界应用中采用更稳定和有希望的性能。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
在为医疗保健领域开发监督的机器学习解决方案时,具有高质量地面真实标签的大规模数据的可用性是一个挑战。尽管临床工作流程中的数字数据量正在增加,但大多数数据都分布在临床站点上并受到保护以确保患者隐私。放射学读数和处理大型临床数据给可用资源带来了重大负担,这是机器学习和人工智能发挥关键作用的地方。用于肌肉骨骼(MSK)诊断的磁共振成像(MRI)是一个例子,其中扫描具有大量信息,但需要大量时间阅读和标记。自我监督的学习(SSL)可以是处理缺乏地面真相标签的解决方案,但通常需要在训练阶段进行大量培训数据。本文中,我们提出了一个基于切片的自制深度学习框架(SB-SSL),这是一种基于切片的新型范式,用于使用膝盖MRI扫描对异常进行分类。我们表明,在有限数量的情况下(<1000),我们提出的框架能够以89.17%的精度识别前交叉韧带撕裂,而AUC为0.954,不超过最先进的情况,而无需使用外部数据。在训练期间。这表明我们提出的框架适用于有限的数据制度中的SSL。
translated by 谷歌翻译
随着Covid-19的爆发,近年来已经出现了大量相关研究。我们提出了一个基于肺CT扫描图像的自动COVID-19诊断框架,即PVT-COV19D。为了适应图像输入的不同维度,我们首先使用变压器模型对图像进行了分类,然后根据正常分布对数据集中进行采样,并将采样结果馈送到修改的PVTV2模型中以进行训练。COV19-CT-DB数据集上的大量实验证明了该方法的有效性。
translated by 谷歌翻译