建立具有可信赖性的AI模型非常重要,尤其是在医疗保健等受监管的地区。在解决Covid-19时,以前的工作将卷积神经网络用作骨干建筑,该骨干建筑物易于过度宣告和过度自信做出决策,使它们不那么值得信赖 - 在医学成像背景下的关键缺陷。在这项研究中,我们提出了一种使用视觉变压器的功能学习方法,该方法使用基于注意力的机制,并检查变形金刚作为医学成像的新骨干结构的表示能力。通过对COVID-19胸部X光片进行分类的任务,我们研究了概括能力是否仅从视觉变形金刚的建筑进步中受益。通过使用“信任评分”计算和视觉解释性技术,对模型的可信度进行了定量和定性评估。我们得出的结论是,基于注意力的特征学习方法在建立可信赖的医疗保健深度学习模型方面有希望。
translated by 谷歌翻译
Computer vision and machine learning are playing an increasingly important role in computer-assisted diagnosis; however, the application of deep learning to medical imaging has challenges in data availability and data imbalance, and it is especially important that models for medical imaging are built to be trustworthy. Therefore, we propose TRUDLMIA, a trustworthy deep learning framework for medical image analysis, which adopts a modular design, leverages self-supervised pre-training, and utilizes a novel surrogate loss function. Experimental evaluations indicate that models generated from the framework are both trustworthy and high-performing. It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
translated by 谷歌翻译
根据诊断各种疾病的胸部X射线图像的可观增长,以及收集广泛的数据集,使用深神经网络进行了自动诊断程序,已经占据了专家的思想。计算机视觉中的大多数可用方法都使用CNN主链来获得分类问题的高精度。然而,最近的研究表明,在NLP中成为事实上方法的变压器也可以优于许多基于CNN的模型。本文提出了一个基于SWIN变压器的多标签分类深模型,作为实现最新诊断分类的骨干。它利用了头部体系结构来利用多层感知器(也称为MLP)。我们评估了我们的模型,该模型称为“ Chest X-Ray14”,最广泛,最大的X射线数据集之一,该数据集由30,000多名14例著名胸部疾病的患者组成100,000多个额叶/背景图像。我们的模型已经用几个数量的MLP层用于头部设置,每个模型都在所有类别上都达到了竞争性的AUC分数。胸部X射线14的全面实验表明,与以前的SOTA平均AUC为0.799相比,三层头的平均AUC得分为0.810,其平均AUC得分为0.810。我们建议对现有方法进行公平基准测试的实验设置,该设置可以用作未来研究的基础。最后,我们通过确认所提出的方法参与胸部的病理相关区域,从而跟进了结果。
translated by 谷歌翻译
随着计算机技术的开发,人工智能已经出现了各种模型。在自然语言处理(NLP)成功之后,变压器模型已应用于计算机视觉(CV)。放射科医生在当今迅速发展的医疗领域中继续面临多重挑战,例如增加工作量和增加的诊断需求。尽管以前有一些常规的肺癌检测方法,但仍需要提高其准确性,尤其是在现实的诊断情况下。本文创造性地提出了一种基于有效变压器的分割方法,并将其应用于医学图像分析。该算法通过分析肺癌数据来完成肺癌分类和细分的任务,并旨在为医务人员提供有效的技术支持。此外,我们在各个方面进行了评估并比较了结果。对于分类任务,通过定期培训和SWIN-B在两项决议中通过预训练的最高准确性可高达82.3%。对于分割任务,我们使用预训练来帮助模型提高实验的准确性。这三个模型的准确性达到95%以上。实验表明该算法可以很好地应用于肺癌分类和分割任务。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
为了在医学成像研究中保持标准,图像应具有必要的图像质量,以进行潜在的诊断使用。尽管基于CNN的方法用于评估图像质量,但仍可以从准确性方面提高其性能。在这项工作中,我们通过使用SWIN Transformer来解决此问题,这改善了导致医疗图像质量降解的质量质量差分类性能。我们在胸部X射线(Object-CXR)和心脏MRI上的左心室流出路分类问题(LVOT)上测试了胸部X射线(Object-CXR)和左心室流出路分类问题的方法。虽然我们在Object-CXR和LVOT数据集中获得了87.1%和95.48%的分类精度,但我们的实验结果表明,SWIN Transformer的使用可以改善对象CXR分类性能,同时获得LVOT数据集的可比性能。据我们所知,我们的研究是医学图像质量评估的第一个Vision Transformer应用程序。
translated by 谷歌翻译
有效的代表学习是提高医学图像分析模型性能的关键。在培训深度学习模型中,常常必须在性能和信任之间进行妥协,这两者都对于医学应用至关重要。此外,用跨熵损失优化的模型往往遭受少数阶级的多数阶级和过于谨慎的无责任的过度交流。在这项工作中,我们将新的代理损失与自我监督学习进行了全新的替代损失,用于使用射线照相图像的Covid-19患者的计算机辅助筛查。此外,我们采用了新的量化分数来衡量模型的可信度。对特征学习方法和损失功能的性能和信任进行了消融研究。比较表明,利用新的替代损失对自我监督模型可以生产出高性能和值得信赖的标签有效的网络。
translated by 谷歌翻译
深度学习和计算机视觉的最新进展减轻了许多瓶颈,从而使算法无标记,并且性能更好。具体而言,变形金刚提供了图像的全球视角,该图像卷积神经网络(CNN)缺乏设计。在这里,我们介绍了跨体系结构自学,这是一种新颖的自我监督学习方法,同时利用了变形金刚和CNN,同时也可以通过易于可用的云服务在计算上访问。与现有的最先进的自我监督学习方法相比,我们从经验上显示了经过CASS训练的CNN,而Transformers则使用100%标记的数据,平均获得8.5%,具有10%标记的数据,为11.5%,1.5%,1百分比在三个不同数据集中标记的数据。值得注意的是,一个被使用的数据集包括自身免疫性疾病的组织病理学幻灯片,这是医学成像中代表性不足的主题,并且数据最少。此外,我们的发现表明,就训练时间而言,CASS的效率是其他最先进方法的两倍。
translated by 谷歌翻译
Covid-19是一种攻击上呼吸道和肺部的新型病毒。它的人对人的传播性非常迅速,这在个人生活的各个方面都引起了严重的问题。尽管一些感染的人可能仍然完全无症状,但经常被目睹有轻度至重度症状。除此之外,全球成千上万的死亡案件表明,检测Covid-19是社区的紧急需求。实际上,这是在筛选医学图像(例如计算机断层扫描(CT)和X射线图像)的帮助下进行的。但是,繁琐的临床程序和大量的每日病例对医生构成了巨大挑战。基于深度学习的方法在广泛的医疗任务中表现出了巨大的潜力。结果,我们引入了一种基于变压器的方法,用于使用紧凑卷积变压器(CCT)自动从X射线图像中自动检测COVID-19。我们的广泛实验证明了该方法的疗效,精度为98%,比以前的作品表现优于先前的作品。
translated by 谷歌翻译
The Coronavirus Disease 2019 (COVID-19) has spread globally and caused serious damage. Chest X-ray images are widely used for COVID-19 diagnosis and the Artificial Intelligence method can increase efficiency and accuracy. In the Challenge of Chest XR COVID-19 detection in Ethics and Explainability for Responsible Data Science (EE-RDS) conference 2021, we proposed a method that combined Swin Transformer and Transformer in Transformer to classify chest X-ray images as three classes: COVID-19, Pneumonia, and Normal (healthy) and achieved 0.9475 accuracies on the test set.
translated by 谷歌翻译
预计未来几十年的全球粮食不安全将加速气候变化率和人口迅速增加。在这种静脉中,重要的是在每种饮食生产水平上消除效率低下。最近深入学习的进步可以帮助降低这种效率低下,但他们的申请尚未成为整个行业的主流,以大规模的规模诱导经济成本。为此,已将现代技术(如CNNS(卷积神经网络)应用于RPQD(原始产生质量检测)任务。另一方面,变压器在其他方式中的视野中的成功首次亮相使我们能够在RPQD中预计这些基于变压器的模型更好的性能。在这项工作中,我们专门调查了最近的最先进的水流(移位的Windows)变压器,这些变压器可以在窗口和窗口间的方式中计算自我关注。我们将Swin变压器与CNN模型进行比较四个RPQD图像数据集,每个CNN模型都包含不同种类的生成:水果和蔬菜,鱼类,猪肉和牛肉。我们观察到Swin Transformer不仅实现了更好或更有竞争力的性能,而且还具有数据和计算效率,使其成为现实世界的实际部署的理想选择。据我们所知,这是第一个对RPQD任务的大规模实证研究,我们希望在未来的作品中更加关注。
translated by 谷歌翻译
对比语言 - 图像预培训(剪辑)在广泛的图像中与跨模仿监督学习的卓越成功 - 在线收集的文本对。到目前为止,夹子的有效性主要是在一般结构域多数制问题中进行研究。这项工作评估了剪辑的有效性,用于医学视觉问题的任务(MedVQA)。为此,我们向PubMedClip提供PubMedClip,基于PubMed文章的医疗领域的微调版本。我们的实验是在两个MedVQA基准数据集中进行,并调查两种MedVQA方法,MEVF(增强的视觉功能)和QCR(通过条件推理的问题回答)。对于这些中的每一个,我们使用PubMedClip,原始剪辑和最先进的MAML(模型 - 不可知的Meta-Learning)网络仅评估视觉表示学习的优点,仅在视觉数据上训练。我们为我们的Medvqa管道和预训练PubMedclip开源代码。与MAML的Visual Encoder相比,剪辑和PubMedClip实现了改进。 PubMedclip以最高精度的最佳效果达到最佳结果,高达3%。个别示例说明了与先前广泛使用的MAML网络相比的PubMedclip的强度。 PubMedclip语言监督的视觉表现出学习导致MedVQA的显着改进。我们的实验揭示了在以前的工作中尚未传授的两个MedVQA基准数据集中的分布差异,并在PubMedClip中导致不同的后端视觉编码,在这些数据集上表现出不同的行为。此外,我们证明了VQA一般与医学领域的基本性能差异。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
快捷方式学习对深度学习模型很常见,但导致了退化的特征表示形式,因此危害了该模型的可推广性和解释性。但是,在广泛使用的视觉变压器框架中的快捷方式学习在很大程度上是未知的。同时,引入特定领域的知识是纠正捷径的主要方法,捷径为背景相关因素。例如,在医学成像领域中,放射科医生的眼睛凝视数据是一种有效的人类视觉先验知识,具有指导深度学习模型的巨大潜力,可以专注于有意义的前景区域。但是,获得眼睛凝视数据是时必的,劳动密集型的,有时甚至是不切实际的。在这项工作中,我们提出了一种新颖而有效的显着性视觉变压器(SGT)模型,以在没有眼神数据的情况下在VIT中纠正快捷方式学习。具体而言,采用计算视觉显着性模型来预测输入图像样本的显着性图。然后,显着图用于散布最有用的图像贴片。在拟议的中士中,图像贴片之间的自我注意力仅集中于蒸馏的信息。考虑到这种蒸馏操作可能会导致全局信息丢失,我们在最后一个编码器层中进一步介绍了一个残留的连接,该连接捕获了所有图像贴片中的自我注意力。四个独立公共数据集的实验结果表明,我们的SGT框架可以有效地学习和利用人类的先验知识,而无需眼睛凝视数据,并且比基线更好。同时,它成功地纠正了有害的快捷方式学习并显着提高了VIT模型的解释性,证明了传递人类先验知识在纠正快捷方式学习方面传递人类先验知识的承诺
translated by 谷歌翻译
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO testdev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-theart by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github. com/microsoft/Swin-Transformer.
translated by 谷歌翻译
手术视频中的活动识别是开发下一代设备和工作流程监测系统的关键研究领域。由于手术是具有高度变化长度的较长过程,因此用于手术视频的深度学习模型通常包括使用主链和时间序列模型的两阶段设置。在本文中,我们研究了许多最新的骨干和时间模型,以找到为手术活动识别提供最强性能的体系结构。我们首先在大规模活动识别数据集上进行模型性能,该数据集包含在多个临床手术室中捕获的800多个手术视频。我们进一步评估了两个较小的公共数据集(Cholec80和Cataract-101数据集)上的模型,分别包含80个视频和101个视频。我们从经验上发现,Swin-Transformer+BigRU时间模型在两个数据集上都产生了强劲的性能。最后,我们通过对新医院进行微调模型来研究模型对新领域的适应性,并试验最近无监督的域适应方法。
translated by 谷歌翻译
With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
translated by 谷歌翻译
图像中的场景细分是视觉内容理解中的一个基本而又具有挑战性的问题,即学习一个模型,将每个图像像素分配给分类标签。这项学习任务的挑战之一是考虑空间和语义关系以获得描述性特征表示,因此从多个量表中学习特征图是场景细分中的一种常见实践。在本文中,我们探讨了在多尺度图像窗口中自我发挥的有效使用来学习描述性视觉特征,然后提出三种不同的策略来汇总这些特征图以解码特征表示形式以进行密集的预测。我们的设计基于最近提出的SWIN Transformer模型,该模型完全放弃了卷积操作。借助简单而有效的多尺度功能学习和聚合,我们的模型在四个公共场景细分数据集,Pascal VOC2012,Coco-STUFF 10K,ADE20K和CITYSCAPES上实现了非常有希望的性能。
translated by 谷歌翻译
视觉变压器在众多计算机视觉任务上表现出了巨大的成功。然而,由于计算复杂性和记忆足迹是二次的,因此其中心分量(软磁性注意力)禁止视觉变压器扩展到高分辨率图像。尽管在自然语言处理(NLP)任务中引入了线性注意以减轻类似问题,但直接将现有的线性注意力应用于视觉变压器可能不会导致令人满意的结果。我们研究了这个问题,发现与NLP任务相比,计算机视觉任务更多地关注本地信息。基于这一观察结果,我们提出了附近的关注,该关注引入了具有线性复杂性的视觉变压器的局部性偏见。具体而言,对于每个图像补丁,我们根据其相邻贴片测量的2D曼哈顿距离调整了注意力重量。在这种情况下,相邻的补丁比遥远的补丁会受到更大的关注。此外,由于我们的附近注意力要求令牌长度比特征维度大得多,以显示其效率优势,因此我们进一步提出了一个新的附近视觉变压器(VVT)结构,以减少特征维度而不脱离准确性。我们在CIFAR100,ImagEnet1k和ADE20K数据集上进行了广泛的实验,以验证我们方法的有效性。当输入分辨率增加时,与以前的基于变压器和基于卷积的网络相比,GFLOP的增长率较慢。特别是,我们的方法达到了最新的图像分类精度,其参数比以前的方法少50%。
translated by 谷歌翻译
在图像变压器网络的编码器部分中的FineTuning佩带的骨干网一直是语义分段任务的传统方法。然而,这种方法揭示了图像在编码阶段提供的语义上下文。本文认为将图像的语义信息纳入预磨料的基于分层变换器的骨干,而FineTuning可显着提高性能。为实现这一目标,我们提出了一个简单且有效的框架,在语义关注操作的帮助下将语义信息包含在编码器中。此外,我们在训练期间使用轻量级语义解码器,为每个阶段提供监督对中间语义的先前地图。我们的实验表明,结合语义前导者增强了所建立的分层编码器的性能,随着絮凝物的数量略有增加。我们通过将Sromask集成到Swin-Cransformer的每个变体中提供了经验证明,因为我们的编码器与不同的解码器配对。我们的框架在CudeScapes数据集上实现了ADE20K数据集的新型58.22%的MIOU,并在Miou指标中提高了超过3%的内容。代码和检查点在https://github.com/picsart-ai-research/semask-egation上公开使用。
translated by 谷歌翻译