通过机器学习学习个性化的癌症治疗,可以提高癌症患者生存的机会。尽管机器学习和精确肿瘤学的最新进展,但这种方法仍然具有挑战性,因为在临床前/临床研究中收集数据以建模多种治疗效率通常是一个昂贵的,耗时的过程。此外,由于某些参与者/样本在试验期间未接受最合适的治疗方法,因此治疗分配的随机分配被证明是次优的。为了应对这一挑战,我们将药物筛查研究作为“上下文匪徒”问题,其中算法根据有关癌细胞系的上下文信息选择抗癌治疗剂,同时调整其治疗策略以最大程度地以“在线”方式以最大化治疗反应。我们建议使用一种新型的深贝叶斯土匪框架,该框架在近似后验之前使用功能,以基于由基因组特征和药物结构组成的多模式信息进行药物反应预测。我们对三个大规模的体外药物基因组学数据集进行了经验评估我们的方法,并表明我们的方法在识别给定细胞系的最佳处理方面优于几个基准。
translated by 谷歌翻译
我们在这里采用贝叶斯非参数混合模型,以将多臂匪徒扩展到尤其是汤普森采样,以扩展到存在奖励模型不确定性的场景。在随机的多臂强盗中,播放臂的奖励是由未知分布产生的。奖励不确定性,即缺乏有关奖励生成分布的知识,引起了探索 - 开发权的权衡:强盗代理需要同时了解奖励分布的属性,并顺序决定下一步要采取哪种操作。在这项工作中,我们通过采用贝叶斯非参数高斯混合模型来进行奖励模型不确定性,将汤普森的抽样扩展到场景中,以进行灵活的奖励密度估计。提出的贝叶斯非参数混合物模型汤普森采样依次学习了奖励模型,该模型最能近似于真实但未知的每臂奖励分布,从而实现了成功的遗憾表现。我们基于基于后验分析的新颖的分析得出的,这是一种针对该方法的渐近遗憾。此外,我们从经验上评估了其在多样化和以前难以捉摸的匪徒环境中的性能,例如,在指数级的家族中,奖励不受异常值和不同的每臂奖励分布。我们表明,拟议的贝叶斯非参数汤普森取样优于表现,无论是平均累积的遗憾和遗憾的波动,最先进的替代方案。在存在强盗奖励模型不确定性的情况下,提出的方法很有价值,因为它避免了严格的逐案模型设计选择,但提供了重要的遗憾。
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
Polypharmacy, most often defined as the simultaneous consumption of five or more drugs at once, is a prevalent phenomenon in the older population. Some of these polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization. Considering the combinatorial nature of the problem as well as the size of claims database and the cost to compute an exact association measure for a given drug combination, it is impossible to investigate every possible combination of drugs. Therefore, we propose to optimize the search for potentially inappropriate polypharmacies (PIPs). To this end, we propose the OptimNeuralTS strategy, based on Neural Thompson Sampling and differential evolution, to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes. We benchmark our method using two datasets generated by an internally developed simulator of polypharmacy data containing 500 drugs and 100 000 distinct combinations. Empirically, our method can detect up to 33\% of PIPs while maintaining an average precision score of 99\% using 10 000 time steps.
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
神经匪使从业者能够有效地在非线性奖励功能上有效地运行。虽然在一般的上下文匪徒通常利用高斯过程(GP)决策的预测分布,但最成功的神经变体仅在推导中使用最后一层参数。神经内核(NK)的研究最近在深网络和GPS之间建立了对应的对应,考虑到NN的所有参数,并且可以比大多数贝叶斯NN更有效地培训。我们建议直接应用NK诱导的分布,以指导基于上行的束缚或汤普森采样的政策。我们展示了NK匪徒在高度非线性结构化数据上实现最先进的性能。此外,我们分析了实际考虑因素,例如训练频率和模型分区。我们相信我们的工作将有助于更好地了解利用NKS在应用环境中的影响。
translated by 谷歌翻译
PAC-Bayes has recently re-emerged as an effective theory with which one can derive principled learning algorithms with tight performance guarantees. However, applications of PAC-Bayes to bandit problems are relatively rare, which is a great misfortune. Many decision-making problems in healthcare, finance and natural sciences can be modelled as bandit problems. In many of these applications, principled algorithms with strong performance guarantees would be very much appreciated. This survey provides an overview of PAC-Bayes performance bounds for bandit problems and an experimental comparison of these bounds. Our experimental comparison has revealed that available PAC-Bayes upper bounds on the cumulative regret are loose, whereas available PAC-Bayes lower bounds on the expected reward can be surprisingly tight. We found that an offline contextual bandit algorithm that learns a policy by optimising a PAC-Bayes bound was able to learn randomised neural network polices with competitive expected reward and non-vacuous performance guarantees.
translated by 谷歌翻译
深度加固学习在各种类型的游戏中使人类水平甚至超级人类性能。然而,学习所需的探测量通常很大。深度加强学习也具有超级性能,因为没有人类能够实现这种探索。为了解决这个问题,我们专注于\ Textit {Saspicing}策略,这是一种与现有优化算法的定性不同的方法。因此,我们提出了线性RS(LINR),其是一种令人满意的算法和风险敏感的满足(RS)的线性扩展,用于应用于更广泛的任务。 RS的概括提供了一种算法,可以通过采用现有优化算法的不同方法来减少探索性操作的体积。 Linrs利用线性回归和多字符分类来线性地近似于RS计算所需的动作选择的动作值和比例。我们的实验结果表明,与上下文强盗问题中的现有算法相比,Linrs减少了探索和运行时间的数量。这些结果表明,满足算法的进一步概括对于复杂的环境可能是有用的,包括要用深增强学习处理的环境。
translated by 谷歌翻译
对于大型小分子的大型库,在考虑一系列疾病模型,测定条件和剂量范围时,详尽的组合化学筛选变得不可行。深度学习模型已实现了硅的最终技术,以预测协同得分。但是,药物组合的数据库对协同剂有偏见,这些结果不一定会概括分布不足。我们采用了使用深度学习模型的顺序模型优化搜索来快速发现与癌细胞系相比的协同药物组合,而与详尽的评估相比,筛查要少得多。在仅3轮ML引导的体外实验(包括校准圆圈)之后,我们发现,对高度协同组合进行了查询的一组药物对。进行了另外两轮ML引导实验,以确保趋势的可重复性。值得注意的是,我们重新发现药物组合后来证实将在临床试验中研究。此外,我们发现仅使用结构信息生成的药物嵌入开始反映作用机理。
translated by 谷歌翻译
我们提出了一种数据驱动的算法,广告商可以用来自动在线出版商的数字广告广告。该算法使广告客户能够跨越可用的目标受众和AD-Media搜索通过在线实验找到其广告系列的最佳组合。找到最佳受众ad AD组合的问题使许多独特的挑战变得复杂,包括(a)需要积极探索以解决先前的不确定性并加快搜索有利可图的组合,(b)许多组合可供选择,产生高维搜索公式,以及(c)成功概率非常低,通常只有百分之一。我们的算法(指定的LRDL,logistic回归与Debiased Lasso的首字母缩写)通过结合四个元素来解决这些挑战:一个用于主动探索的多层匪徒框架;套索惩罚功能以处理高维度;一个内置的偏见核,可处理套索引起的正则化偏差;以及一个半参数回归模型,用于促进跨武器交叉学习的结果。该算法是作为汤普森采样器实施的,据我们所知,这是第一个实际上可以解决以上所有挑战的方法。具有真实和合成数据的模拟表明该方法是有效的,并记录了其在最近的高维匪徒文献中的几个基准测试中的出色性能。
translated by 谷歌翻译
最近在文献中显示,在线学习实验的样本平均值在用于估计平均奖励时偏置。为了纠正偏差,违规评估方法,包括重要性采样和双倍稳健的估算,通常计算条件倾向分数,这对于UCB等非随机策略而言。本文提供了使用Bootstrap衰减样本的过程,这不需要对奖励分配的知识并应用于任何自适应策略。数值实验证明了受欢迎的多武装强盗算法产生的样本的有效偏差,例如探索 - 然后提交(ETC),UCB,Thompson采样(TS)和$ \ epsilon $ -Greedy(例如)。我们分析并提供了ETC算法下的程序的理论理由,包括真实和引导世界中偏差衰减率的渐近融合。
translated by 谷歌翻译
The application of reinforcement learning in credit scoring has created a unique setting for contextual logistic bandit that does not conform to the usual exploration-exploitation tradeoff but rather favors exploration-free algorithms. Through sufficient randomness in a pool of observable contexts, the reinforcement learning agent can simultaneously exploit an action with the highest reward while still learning more about the structure governing that environment. Thus, it is the case that greedy algorithms consistently outperform algorithms with efficient exploration, such as Thompson sampling. However, in a more pragmatic scenario in credit scoring, lenders can, to a degree, classify each borrower as a separate group, and learning about the characteristics of each group does not infer any information to another group. Through extensive simulations, we show that Thompson sampling dominates over greedy algorithms given enough timesteps which increase with the complexity of underlying features.
translated by 谷歌翻译
在本文中,我们考虑了在规避风险的标准下线性收益的上下文多臂强盗问题。在每个回合中,每个手臂都会揭示上下文,决策者选择一只手臂拉动并获得相应的奖励。特别是,我们将均值变化视为风险标准,最好的组是具有最大均值奖励的均值。我们将汤普森采样算法应用于脱节模型,并为提出算法的变体提供全面的遗憾分析。对于$ t $ rounds,$ k $ Actions和$ d $ - 维功能向量,我们证明了$ o((1+ \ rho+\ frac {1} {1} {\ rho}){\ rho})d \ ln t \ ln t \ ln的遗憾。 \ frac {k} {\ delta} \ sqrt {d k t^{1+2 \ epsilon} \ ln \ frac {k} {\ delta} \ frac {1} {\ epsilon}} $ 1 - \ \ delta $在带有风险公差$ \ rho $的均值方差标准下,对于任何$ 0 <\ epsilon <\ frac {1} {2} $,$ 0 <\ delta <1 $。我们提出的算法的经验性能通过投资组合选择问题来证明。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
在比较多臂匪徒算法的性能时,通常会忽略缺失数据的潜在影响。实际上,这也影响了他们的实现,在克服此问题的最简单方法是继续根据原始的强盗算法进行采样,而忽略了缺失的结果。我们通过广泛的仿真研究研究了对这种方法的性能的影响,以处理几种强盗算法的缺失数据,假设奖励是随机缺失的。我们专注于具有二元结果的两臂匪徒在患者分配的背景下用于样本量相对较小的临床试验的背景下。但是,我们的结果适用于预计丢失数据的Bandit算法的其他应用。我们评估所得的运营特征,包括预期的奖励。考虑到双臂失踪的不同概率。我们工作的关键发现是,当使用忽略丢失数据的最简单策略时,对多军匪徒策略的预期性能的影响会根据这些策略平衡勘探探索折衷权衡的方式而有所不同。旨在探索的算法继续将样本分配给手臂,而响应却更多(被认为是具有较少观察到的信息的手臂,该算法比其他算法更具吸引力)。相比之下,针对剥削的算法将迅速为来自手臂的样品迅速分配高价值,而当前高平均值的算法如何,与每只手臂的水平观测无关。此外,对于算法更多地关注探索,我们说明,可以使用简单的平均插补方法来缓解缺失响应的问题。
translated by 谷歌翻译
高通量药物筛查测定法的最新出现引发了机器学习方法的密集开发,包括预测癌细胞系对抗癌药物的敏感性的模型,以及用于生成潜在药物候选者的方法。然而,尚未全面探索具有特定特性的化合物产生具有特定特性和同时建模其功效的概念。为了满足这一需求,我们提出了Vadeers,这是一种基于各种自动编码器的药物功效估算推荐系统。化合物的产生是由具有半监视的高斯混合模型(GMM)的新型自动编码器进行的。先验定义了在潜在空间中的聚类,其中簇与特定的药物特性相关联。此外,Vadeers配备了单元线自动编码器和灵敏度预测网络。该模型结合了抗癌药物的微笑弦表示的数据,它们对蛋白激酶的抑制作用,细胞系生物学特征以及细胞系对药物的敏感性的测量。评估的Vadeers变体在真实和预测的药物敏感性估计之间达到了较高的R = 0.87 Pearson相关性。我们以一种方式训练GMM先验,使潜在空间中的簇通过其抑制作用对应于药物的预计聚类。我们表明,学到的潜在表示和新生成的数据点准确地反映了给定的聚类。总而言之,Vadeers提供了一种全面的药物和细胞系特性模型及其之间的关系,以及引导的新型化合物。
translated by 谷歌翻译
实验数据的获取成本很高,这使得很难校准复杂模型。对于许多型号而言,鉴于有限的实验预算,可以产生最佳校准的实验设计并不明显。本文介绍了用于设计实验的深钢筋学习(RL)算法,该算法通过Kalman Filter(KF)获得的Kullback-Leibler(KL)差异测量的信息增益最大化。这种组合实现了传统方法太昂贵的快速在线实验的实验设计。我们将实验的可能配置作为决策树和马尔可夫决策过程(MDP),其中每个增量步骤都有有限的操作选择。一旦采取了动作,就会使用各种测量来更新实验状态。该新数据导致KF对参数进行贝叶斯更新,该参数用于增强状态表示。与NASH-SUTCLIFFE效率(NSE)指数相反,该指数需要额外的抽样来检验前进预测的假设,KF可以通过直接估计通过其他操作获得的新数据值来降低实验的成本。在这项工作中,我们的应用集中在材料的机械测试上。使用复杂的历史依赖模型的数值实验用于验证RL设计实验的性能并基准测试实现。
translated by 谷歌翻译