我们提出了一种数据驱动的算法,广告商可以用来自动在线出版商的数字广告广告。该算法使广告客户能够跨越可用的目标受众和AD-Media搜索通过在线实验找到其广告系列的最佳组合。找到最佳受众ad AD组合的问题使许多独特的挑战变得复杂,包括(a)需要积极探索以解决先前的不确定性并加快搜索有利可图的组合,(b)许多组合可供选择,产生高维搜索公式,以及(c)成功概率非常低,通常只有百分之一。我们的算法(指定的LRDL,logistic回归与Debiased Lasso的首字母缩写)通过结合四个元素来解决这些挑战:一个用于主动探索的多层匪徒框架;套索惩罚功能以处理高维度;一个内置的偏见核,可处理套索引起的正则化偏差;以及一个半参数回归模型,用于促进跨武器交叉学习的结果。该算法是作为汤普森采样器实施的,据我们所知,这是第一个实际上可以解决以上所有挑战的方法。具有真实和合成数据的模拟表明该方法是有效的,并记录了其在最近的高维匪徒文献中的几个基准测试中的出色性能。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
Thompson sampling is one of oldest heuristic to address the exploration / exploitation trade-off, but it is surprisingly unpopular in the literature. We present here some empirical results using Thompson sampling on simulated and real data, and show that it is highly competitive. And since this heuristic is very easy to implement, we argue that it should be part of the standard baselines to compare against.
translated by 谷歌翻译
在本文中,我们在稀疏的随机上下文线性土匪中重新审视了遗憾的最小化问题,其中特征向量可能具有很大的尺寸$ d $,但是奖励功能取决于一些,例如$ s_0 \ ll d $,其中这些功能的这些功能只要。我们提出了阈值拉索匪徒,该算法(i)估算了定义奖励功能及其稀疏支持的向量,即显着特征元素,使用带有阈值的Lasso框架,以及(ii)根据此处选择手臂估计预测其支持。该算法不需要对稀疏索引$ s_0 $的先验知识,并且可以在某些对称假设下不含参数。对于这种简单的算法,我们将非偶然的遗憾上限建立为$ \ mathcal {o}(\ log d + d + \ sqrt {t})$一般,为$ \ mathcal {o} log t)$在所谓的边缘条件下(手臂奖励分离的概率条件)。以前的算法的遗憾将其缩放为$ \ Mathcal {o}(\ log D + \ \ sqrt {t \ log(d t)})$和$ \ mathcal {o}(\ log log t \ log t \ log t \ log t \ log d)$设置分别。通过数值实验,我们确认我们的算法优于现有方法。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
我们在这里采用贝叶斯非参数混合模型,以将多臂匪徒扩展到尤其是汤普森采样,以扩展到存在奖励模型不确定性的场景。在随机的多臂强盗中,播放臂的奖励是由未知分布产生的。奖励不确定性,即缺乏有关奖励生成分布的知识,引起了探索 - 开发权的权衡:强盗代理需要同时了解奖励分布的属性,并顺序决定下一步要采取哪种操作。在这项工作中,我们通过采用贝叶斯非参数高斯混合模型来进行奖励模型不确定性,将汤普森的抽样扩展到场景中,以进行灵活的奖励密度估计。提出的贝叶斯非参数混合物模型汤普森采样依次学习了奖励模型,该模型最能近似于真实但未知的每臂奖励分布,从而实现了成功的遗憾表现。我们基于基于后验分析的新颖的分析得出的,这是一种针对该方法的渐近遗憾。此外,我们从经验上评估了其在多样化和以前难以捉摸的匪徒环境中的性能,例如,在指数级的家族中,奖励不受异常值和不同的每臂奖励分布。我们表明,拟议的贝叶斯非参数汤普森取样优于表现,无论是平均累积的遗憾和遗憾的波动,最先进的替代方案。在存在强盗奖励模型不确定性的情况下,提出的方法很有价值,因为它避免了严格的逐案模型设计选择,但提供了重要的遗憾。
translated by 谷歌翻译
决策者经常面对“许多匪徒”问题,其中必须同时学习相关但异构的情境匪徒实例。例如,大型零售商可能希望在许多商店中动态地学习产品需求,以解决定价或库存问题,这使得可以共同学习为服务类似客户的商店;或者,医院网络可能希望在许多提供商中动态学习患者风险以分配个性化干预措施,这使得可以为服务类似患者群体的医院共同学习。我们研究每个匪徒实例中未知参数可以分解为全局参数加上稀疏实例特定术语的设置。然后,我们提出了一种新颖的两级估计器,通过使用强大的统计数据组合(在类似的实例中学到)和套索回归(将结果进行替代),以样本有效的方式利用这种结构。我们在强盗算法中嵌入了这个估计器,并证明它在上下文维度下,它可以改善渐近遗憾界限。这种改进是数据较差的实例的指数。我们进一步展示了我们的结果如何依赖于强盗实例的基础网络结构。
translated by 谷歌翻译
We introduce a new setting, optimize-and-estimate structured bandits. Here, a policy must select a batch of arms, each characterized by its own context, that would allow it to both maximize reward and maintain an accurate (ideally unbiased) population estimate of the reward. This setting is inherent to many public and private sector applications and often requires handling delayed feedback, small data, and distribution shifts. We demonstrate its importance on real data from the United States Internal Revenue Service (IRS). The IRS performs yearly audits of the tax base. Two of its most important objectives are to identify suspected misreporting and to estimate the "tax gap" -- the global difference between the amount paid and true amount owed. Based on a unique collaboration with the IRS, we cast these two processes as a unified optimize-and-estimate structured bandit. We analyze optimize-and-estimate approaches to the IRS problem and propose a novel mechanism for unbiased population estimation that achieves rewards comparable to baseline approaches. This approach has the potential to improve audit efficacy, while maintaining policy-relevant estimates of the tax gap. This has important social consequences given that the current tax gap is estimated at nearly half a trillion dollars. We suggest that this problem setting is fertile ground for further research and we highlight its interesting challenges. The results of this and related research are currently being incorporated into the continual improvement of the IRS audit selection methods.
translated by 谷歌翻译
Personalized web services strive to adapt their services (advertisements, news articles, etc.) to individual users by making use of both content and user information. Despite a few recent advances, this problem remains challenging for at least two reasons. First, web service is featured with dynamically changing pools of content, rendering traditional collaborative filtering methods inapplicable. Second, the scale of most web services of practical interest calls for solutions that are both fast in learning and computation.In this work, we model personalized recommendation of news articles as a contextual bandit problem, a principled approach in which a learning algorithm sequentially selects articles to serve users based on contextual information about the users and articles, while simultaneously adapting its article-selection strategy based on user-click feedback to maximize total user clicks.The contributions of this work are three-fold. First, we propose a new, general contextual bandit algorithm that is computationally efficient and well motivated from learning theory. Second, we argue that any bandit algorithm can be reliably evaluated offline using previously recorded random traffic. Finally, using this offline evaluation method, we successfully applied our new algorithm to a Yahoo! Front Page Today Module dataset containing over 33 million events. Results showed a 12.5% click lift compared to a standard context-free bandit algorithm, and the advantage becomes even greater when data gets more scarce.
translated by 谷歌翻译
使用始终有效的在线统计学习程序设计动态定价政策是一个重要且尚未解决的问题。最现有的动态定价政策,重点关注所采用的客户选择模型的忠诚度,展示了在定价过程中调整学习统计模型的在线不确定性的有限能力。在本文中,我们提出了一种新颖的方法,可以使用理论担保设计基于动态定价策略的正规化在线统计学习。新方法克服了在线套索程序持续监测的挑战,并具有多种吸引人的财产。特别是,我们做出了决定性观察,即定价决策的始终有效性构建和茁壮成长在线正规方案。我们所提出的在线正则化计划将建议的乐观在线正常化最高似然定价(Oormlp)定价政策具有三大优势:将市场噪声知识编码为定价过程乐观;在线统计学习,以所有决策点的始终有效期以时间均匀的非渐近Oracle不等式信封预测误差过程。这种类型的非渐近推理结果允许我们在实践中设计更具样品有效和强大的动态定价算法。理论上,所提出的OormLP算法利用高维模型的稀疏结构,并在决策范围内确保对数后悔。通过提出一种乐观的在线套索程序,可以根据非渐近鞅浓度的新颖,提出解决过程级别的动态定价问题的乐观在线套索程序来实现这些理论前进。在实验中,我们在不同的合成和实际定价问题设置中评估OormLP,并证明OormLP推进了最先进的方法。
translated by 谷歌翻译
匪徒问题的最新作品在顺序决策环境中采用了拉索融合理论。即使有完全观察到的上下文,也存在一些技术挑战,阻碍了现有的套索融合理论的应用:1)证明在有条件的高斯噪声下的受限特征值条件和2)考虑上下文变量与所选动作之间的依赖性。本文研究了缺失协变量对随机线性匪徒遗憾的影响。我们的工作为拟议算法所产生的协变量概率所产生的遗憾提供了高概率的上限,这表明遗憾的是由于缺失而导致的遗憾,最多$ \ zeta_ {min}^2 $,其中$ \ zeta_ { min} $是在上下文向量观察协变量的最小概率。我们说明了我们的算法,用于实验设计的实际应用来通过连续选择的类别区分DNA探针来收集基因表达数据。
translated by 谷歌翻译
我们介绍了一个多臂强盗模型,其中奖励是多个随机变量的总和,每个动作只会改变其中的分布。每次动作之后,代理都会观察所有变量的实现。该模型是由营销活动和推荐系统激励的,在该系统中,变量代表单个客户的结果,例如点击。我们提出了UCB风格的算法,以估计基线上的动作的提升。我们研究了问题的多种变体,包括何时未知基线和受影响的变量,并证明所有这些变量均具有sublrinear后悔界限。我们还提供了较低的界限,以证明我们的建模假设的必要性是合理的。关于合成和现实世界数据集的实验显示了估计不使用这种结构的策略的振奋方法的好处。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
大多数在线平台都在努力从与用户的互动中学习,许多人从事探索:为了获取新信息而做出潜在的次优选择。我们研究探索与竞争之间的相互作用:这样的平台如何平衡学习探索和用户的竞争。在这里,用户扮演三个不同的角色:他们是产生收入的客户,他们是学习的数据来源,并且是自私的代理商,可以在竞争平台中进行选择。我们考虑了一种风格化的双重垄断模型,其中两家公司面临着相同的多军强盗问题。用户一一到达,并在两家公司之间进行选择,因此,只有在选择它的情况下,每个公司都在其强盗问题上取得进展。通过理论结果和数值模拟的混合,我们研究了竞争是否会激发更好的Bandit算法的采用,以及它是否导致用户增加福利。我们发现,Stark竞争会导致公司致力于导致低福利的“贪婪”强盗算法。但是,通过向公司提供一些“免费”用户来激励更好的探索策略并增加福利来削弱竞争。我们调查了削弱竞争的两个渠道:放松用户的理性并为一家公司带来首次推广优势。我们的发现与“竞争与创新”关系密切相关,并阐明了数字经济中的第一步优势。
translated by 谷歌翻译
本文介绍了一种新型的非平稳动态定价算法设计,定价代理面临不完整的需求信息和市场环境转移。代理商进行了价格实验,以了解每种产品的需求曲线和最大化价格,同时意识到市场环境的变化,以避免提供次优价的高机会成本。拟议的酸P扩展了来自统计机器学习的信息指导的采样(IDS)算法,以包括微观经济选择理论,并采用新颖的定价策略审核程序,以避免在市场环境转移后避免次优定价。拟议的酸P在一系列市场环境变化中胜过包括上置信度结合(UCB)和汤普森采样(TS)在内的匪徒算法。
translated by 谷歌翻译
可以将相当多的现实问题提出为决策问题,其中必须反复从一组替代方案中做出适当的选择。多次专家判断,无论是人为的还是人为的,都可以帮助做出正确的决定,尤其是在探索替代解决方案的昂贵时。由于专家意见可能会偏离,因此可以通过汇总独立判断来解决找到正确的替代方案的问题作为集体决策问题(CDM)。当前的最新方法集中于有效地找到最佳专家,因此如果所有专家均不合格或过于偏见,则表现不佳,从而可能破坏决策过程。在本文中,我们提出了一种基于上下文多臂匪徒问题(CMAB)的新算法方法,以识别和抵消这种偏见的专业知识。我们探索同质,异质和两极分化的专家小组,并表明这种方法能够有效利用集体专业知识,优于最先进的方法,尤其是当提供的专业知识质量降低时。我们的新型CMAB启发方法实现了更高的最终表现,并且在收敛的同时比以前的自适应算法更快。
translated by 谷歌翻译
深度加固学习在各种类型的游戏中使人类水平甚至超级人类性能。然而,学习所需的探测量通常很大。深度加强学习也具有超级性能,因为没有人类能够实现这种探索。为了解决这个问题,我们专注于\ Textit {Saspicing}策略,这是一种与现有优化算法的定性不同的方法。因此,我们提出了线性RS(LINR),其是一种令人满意的算法和风险敏感的满足(RS)的线性扩展,用于应用于更广泛的任务。 RS的概括提供了一种算法,可以通过采用现有优化算法的不同方法来减少探索性操作的体积。 Linrs利用线性回归和多字符分类来线性地近似于RS计算所需的动作选择的动作值和比例。我们的实验结果表明,与上下文强盗问题中的现有算法相比,Linrs减少了探索和运行时间的数量。这些结果表明,满足算法的进一步概括对于复杂的环境可能是有用的,包括要用深增强学习处理的环境。
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译