Many real-world problems are usually computationally costly and the objective functions evolve over time. Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems in a static environment whereas it has rarely been studied under dynamic environments. This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems. Specifically, it applies a hierarchical multi-output Gaussian process to capture the correlation between data collected from different time steps with a linearly increased number of hyperparameters. Furthermore, an adaptive source task selection along with a bespoke warm staring initialization mechanisms are proposed to better leverage the knowledge extracted from previous optimization exercises. By doing so, the data-driven evolutionary optimization can jump start the optimization in the new environment with a strictly limited computational budget. Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm against nine state-of-the-art peer algorithms.
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
算法配置(AC)与对参数化算法最合适的参数配置的自动搜索有关。目前,文献中提出了各种各样的交流问题变体和方法。现有评论没有考虑到AC问题的所有衍生物,也没有提供完整的分类计划。为此,我们引入分类法以分别描述配置方法的交流问题和特征。我们回顾了分类法的镜头中现有的AC文献,概述相关的配置方法的设计选择,对比方法和问题变体相互对立,并描述行业中的AC状态。最后,我们的评论为研究人员和从业人员提供了AC领域的未来研究方向。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
可以将多任务学习(MTL)范例追溯到Caruana(1997)的早期纸张中,其中表示可以使用来自多个任务的数据,其目的是在独立地学习每个任务的旨在获得更好的性能。 MTL与相互矛盾的目标的解决方案需要在它们中进行折衷,这通常超出了直线组合可以实现的。理论上原则和计算有效的策略正在寻找不受他人主导的解决方案,因为它在帕累托分析中解决了它。多任务学习环境中产生的多目标优化问题具有特定的功能,需要adhoc方法。对这些特征的分析和新的计算方法的提议代表了这项工作的重点。多目标进化算法(MOEAS)可以容易地包括优势的概念,因此可以分析。 MOEAS的主要缺点是关于功能评估的低样本效率。此缺点的关键原因是大多数进化方法不使用模型来近似于目标函数。贝叶斯优化采用基于代理模型的完全不同的方法,例如高斯过程。在本文中,输入空间中的解决方案表示为封装功能评估中包含的知识的概率分布。在这种概率分布的空间中,赋予由Wassersein距离给出的度量,可以设计一种新的算法MOEA / WST,其中模型不直接在目标函数上,而是在输入空间中的对象的中间信息空间中被映射成直方图。计算结果表明,MoEA / WST提供的样品效率和帕累托集的质量明显优于标准MoEa。
translated by 谷歌翻译
最近几十年来,已经采用了用于解决各种多主体优化问题(MOPS)的多主体进化算法(MOEAS)的显着进步。但是,这些逐渐改善的MOEAS并不一定配备了精致的可扩展和可学习的解决问题的策略,这些策略能够应对缩放型拖把带来的新的和宏伟的挑战,并不断提高各种方面的复杂性或规模,主要包括昂贵的方面,包括昂贵的方面。功能评估,许多目标,大规模搜索空间,时变环境和多任务。在不同的情况下,它需要不同的思考来设计新的强大MOEAS,以有效地解决它们。在这种情况下,对可学习的MOEAS进行的研究,以机器学习技术进行缩放的拖把,在进化计算领域受到了广泛的关注。在本文中,我们从可扩展的拖把和可学习的MOEAS的分类学开始,然后分析将拖把构成对传统MOEAS的挑战的分析。然后,我们综合概述了可学习的MOEAS的最新进展,以求解各种扩展拖把,主要集中在三个有吸引力的有前途的方向上(即,可学习的环境选择的可学习的进化鉴别器,可学习的进化生物的可学习生殖发生器,以及可学习的进化转移,用于分享或分享或分享或进行分享或可学习的转移。不同问题域之间的经验)。在本文中提供了有关可学习的MOEAS的见解,以参考该领域的努力的一般踪迹。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
软件配置调整对于优化给定的性能目标(例如,最小化延迟)至关重要。然而,由于软件的本质上复杂的配置景观和昂贵的测量,成功存在相当轻微的成功,特别是在防止搜索被困在本地Optima中。为了解决这个问题,在本文中,我们采取了不同的视角。除了专注于改进优化器,而不是专注于优化模型的水平,并提出了一种META多象化(MMO)模型,其考虑辅助性能目标(例如,除了延迟之外的吞吐率)。是什么让这个型号独特的是我们没有优化辅助性能目标,而是使用它来类似地进行,而不同的配置较差的不同(即,彼此Nondominize的Pareto),从而防止搜索被困在本地Optima中。重要的是,通过一种新的常规化方法,我们展示了如何有效地使用MMO模型而不担心其重量 - 可能影响其有效性的唯一但高度敏感的参数。来自11个现实世界软件系统/环境的22例实验证实,我们的MMO模型具有新的归一化的MMO模型在82%的情况下比其最先进的单一目标对应物更好,同时实现高达2.09倍的加速。对于67%的病例,新的归一化也使MMO模型能够在使用我们之前的FSE工作中使用的正常化时优于实例,以便在预先调整的最佳重量下,节省了大量资源找到一个很好的重量。我们还表明,具有新标准化的MMO模型可以整合闪存,最近的基于模型的调音工具,在68%的情况下,一般的加速1.22倍。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
Web应用程序防火墙(WAF)如今扮演着不可或缺的角色,以保护Web应用程序免受SQL注入,XML注入和PHP注射等各种恶意注射攻击的影响。但是,鉴于注射攻击的复杂性不断发展,调整WAF的复杂性越来越复杂,确保WAF没有注射脆弱性是一项挑战,这样它将阻止所有恶意注射攻击而不会错误地影响合法信息。因此,自动测试WAF是及时且必不可少的任务。在本文中,我们提出了Danuoyi,这是一种自动注射测试工具,同时生成了对WAF上多种注射攻击的测试输入。我们的基本思想来自自然语言处理域中的跨语性翻译。特别是,不同类型的注射攻击的测试输入在句法上是不同的,但在语义上可能是相似的。因此,跨多种编程语言共享语义知识可以刺激更复杂的测试输入的产生,并发现WAF的注入脆弱性,原本很难找到。为此,在Danuoyi中,我们使用多任务学习来训练多个注射翻译模型,该学习将任何一对注射攻击之间的测试输入转换。然后,该模型由新型的多任务进化算法使用,以共同进化测试输入,以通过每一代人的共享交配池和特定于域的突变算子促进不同类型的注射攻击。我们对三个现实世界中的开源WAF和六种注射攻击进行了实验,结果表明,Danuoyi的生成高达3.8倍和5.78倍的有效测试输入(即,绕过基础WAF)比其最新的测试输入更大。 ART单项任务以及基于语法的注射结构。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。从理论上讲,我们与预先训练的先验表示对BO的遗憾。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译
强化学习(RL)旨在通过与环境的互动来找到最佳政策。因此,学习复杂行为需要大量的样本,这在实践中可能是持久的。然而,而不是系统地推理和积极选择信息样本,用于本地搜索的政策梯度通常从随机扰动获得。这些随机样品产生高方差估计,因此在样本复杂性方面是次优。积极选择内容性样本是贝叶斯优化的核心,它构成了过去样本的目标的概率替代物,以推理信息的后来的随后。在本文中,我们建议加入两个世界。我们利用目标函数的概率模型及其梯度开发算法。基于该模型,该算法决定查询嘈杂的零顺序oracle以提高梯度估计。生成的算法是一种新型策略搜索方法,我们与现有的黑盒算法进行比较。比较揭示了改进的样本复杂性和对合成目标的广泛实证评估的差异降低。此外,我们突出了主动抽样对流行的RL基准测试的好处。
translated by 谷歌翻译
制造中的一个自主实验平台据说能够进行顺序搜索,以便自行为先进材料寻找合适的制造条件,甚至用于发现具有最小的人为干预的新材料。这种平台的智能控制的核心是政策指导顺序实验,即根据到目前为止所做的事情来决定在下次进行下一个实验的地方。此类政策不可避免地违反勘探,而目前的做法是利用预期改进标准或其变体的贝叶斯优化框架。我们讨论是否利用与直接观察相关的元素和惊喜程度来促进剥削与勘探有益。我们使用两个现有的惊喜指标设计了一个惊喜的反应政策,称为香农惊喜和贝叶斯惊喜。我们的分析表明,令人惊讶的反应政策似乎更适合于在资源限制下快速表征响应面或设计地点的整体景观。我们认为未来派自治实验平台需要这种能力。我们没有声称我们有一个完全自主的实验平台,但相信我们目前的努力揭示了新灯或提供了不同的视角,因为研究人员正在赛车提升各种原始自治实验系统的自主权。
translated by 谷歌翻译
在工程和科学的许多领域中,优化多个混合变量,昂贵的黑盒问题的多个非首选目标很重要。这些问题的昂贵,嘈杂,黑盒的性质使它们成为贝叶斯优化(BO)的理想候选者。然而,由于BO的基础平稳的高斯工艺替代模型,混合变量和多目标问题是一个挑战。当前的多目标BO算法无法处理可混合变量的问题。我们提出了MixMobo,这是第一个用于此类问题的混合变量,多目标贝叶斯优化框架。使用MixMobo,可以有效地找到用于多目标,混合变量设计空间的最佳帕累托叶,同时确保多样化的解决方案。该方法足够灵活地结合了不同的内核和采集功能,包括其他作者为混合变量或多目标问题开发的函数。我们还提出了Hedgemo,这是一种修改后的对冲策略,该策略使用采集功能的投资组合来解决多目标问题。我们提出了新的采集功能,SMC。我们的结果表明,MixMobo在合成问题上针对其他可混合变量算法表现良好。我们将MixMobo应用于架构材料的现实世界设计,并表明我们的最佳设计是经过实验制造和验证的,其应变能密度$ 10^4 $ $ 10^4 $ $倍。
translated by 谷歌翻译
Bayesian Optimization(BO)是全球优化的黑匣子客观功能的方法,这是昂贵的评估。 Bo Powered实验设计在材料科学,化学,实验物理,药物开发等方面发现了广泛的应用。这项工作旨在提请注意应用BO在设计实验中的益处,并提供博手册,涵盖方法和软件,为了方便任何想要申请或学习博的人。特别是,我们简要解释了BO技术,审查BO中的所有应用程序在添加剂制造中,比较和举例说明不同开放BO库的功能,解锁BO的新潜在应用,以外的数据(例如,优先输出)。本文针对读者,了解贝叶斯方法的一些理解,但不一定符合添加剂制造的知识;软件性能概述和实施说明是任何实验设计从业者的乐器。此外,我们在添加剂制造领域的审查突出了博的目前的知识和技术趋势。本文在线拥有补充材料。
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
许多昂贵的黑匣子优化问题对其输入敏感。在这些问题中,定位一个良好的设计区域更有意义,而不是一个可能的脆弱的最佳设计。昂贵的黑盒功能可以有效地优化贝叶斯优化,在那里高斯过程是在昂贵的功能之前的流行选择。我们提出了一种利用贝叶斯优化的强大优化方法,找到一种设计空间区域,其中昂贵的功能的性能对输入相对不敏感,同时保持质量好。这是通过从正在建模昂贵的功能的高斯进程的实现来实现这一点,并评估每个实现的改进。这些改进的期望可以用进化算法廉价地优化,以确定评估昂贵功能的下一个位置。我们描述了一个有效的过程来定位最佳预期改进。我们凭经验展示了评估候选不确定区域的昂贵功能的昂贵功能,该模型最不确定,或随机地产生最佳收敛与利用方案相比。我们在两个,五个和十个维度中说明了我们的六个测试功能的方法,并证明它能够优于来自文献的两种最先进的方法。我们还展示了我们的方法在4和8维中展示了两个真实问题,这涉及训练机器人臂,将物体推到目标上。
translated by 谷歌翻译