软件配置调整对于优化给定的性能目标(例如,最小化延迟)至关重要。然而,由于软件的本质上复杂的配置景观和昂贵的测量,成功存在相当轻微的成功,特别是在防止搜索被困在本地Optima中。为了解决这个问题,在本文中,我们采取了不同的视角。除了专注于改进优化器,而不是专注于优化模型的水平,并提出了一种META多象化(MMO)模型,其考虑辅助性能目标(例如,除了延迟之外的吞吐率)。是什么让这个型号独特的是我们没有优化辅助性能目标,而是使用它来类似地进行,而不同的配置较差的不同(即,彼此Nondominize的Pareto),从而防止搜索被困在本地Optima中。重要的是,通过一种新的常规化方法,我们展示了如何有效地使用MMO模型而不担心其重量 - 可能影响其有效性的唯一但高度敏感的参数。来自11个现实世界软件系统/环境的22例实验证实,我们的MMO模型具有新的归一化的MMO模型在82%的情况下比其最先进的单一目标对应物更好,同时实现高达2.09倍的加速。对于67%的病例,新的归一化也使MMO模型能够在使用我们之前的FSE工作中使用的正常化时优于实例,以便在预先调整的最佳重量下,节省了大量资源找到一个很好的重量。我们还表明,具有新标准化的MMO模型可以整合闪存,最近的基于模型的调音工具,在68%的情况下,一般的加速1.22倍。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
算法配置(AC)与对参数化算法最合适的参数配置的自动搜索有关。目前,文献中提出了各种各样的交流问题变体和方法。现有评论没有考虑到AC问题的所有衍生物,也没有提供完整的分类计划。为此,我们引入分类法以分别描述配置方法的交流问题和特征。我们回顾了分类法的镜头中现有的AC文献,概述相关的配置方法的设计选择,对比方法和问题变体相互对立,并描述行业中的AC状态。最后,我们的评论为研究人员和从业人员提供了AC领域的未来研究方向。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
可以将多任务学习(MTL)范例追溯到Caruana(1997)的早期纸张中,其中表示可以使用来自多个任务的数据,其目的是在独立地学习每个任务的旨在获得更好的性能。 MTL与相互矛盾的目标的解决方案需要在它们中进行折衷,这通常超出了直线组合可以实现的。理论上原则和计算有效的策略正在寻找不受他人主导的解决方案,因为它在帕累托分析中解决了它。多任务学习环境中产生的多目标优化问题具有特定的功能,需要adhoc方法。对这些特征的分析和新的计算方法的提议代表了这项工作的重点。多目标进化算法(MOEAS)可以容易地包括优势的概念,因此可以分析。 MOEAS的主要缺点是关于功能评估的低样本效率。此缺点的关键原因是大多数进化方法不使用模型来近似于目标函数。贝叶斯优化采用基于代理模型的完全不同的方法,例如高斯过程。在本文中,输入空间中的解决方案表示为封装功能评估中包含的知识的概率分布。在这种概率分布的空间中,赋予由Wassersein距离给出的度量,可以设计一种新的算法MOEA / WST,其中模型不直接在目标函数上,而是在输入空间中的对象的中间信息空间中被映射成直方图。计算结果表明,MoEA / WST提供的样品效率和帕累托集的质量明显优于标准MoEa。
translated by 谷歌翻译
HyperParameter Optimization(HPO)是一种确保机器学习(ML)算法最佳性能的必要步骤。已经开发了几种方法来执行HPO;其中大部分都集中在优化一个性能措施(通常是基于错误的措施),并且在这种单一目标HPO问题上的文献是巨大的。然而,最近似乎似乎侧重于同时优化多个冲突目标的算法。本文提出了对2014年至2020年的文献的系统调查,在多目标HPO算法上发布,区分了基于成逐的算法,Metamodel的算法以及使用两者混合的方法。我们还讨论了用于比较多目标HPO程序和今后的研究方向的质量指标。
translated by 谷歌翻译
许多现实世界的科学和工业应用都需要优化多个竞争的黑盒目标。当目标是昂贵的评估时,多目标贝叶斯优化(BO)是一种流行的方法,因为其样品效率很高。但是,即使有了最近的方法学进步,大多数现有的多目标BO方法在具有超过几十个参数的搜索空间上的表现较差,并且依赖于随着观测值数量进行立方体扩展的全局替代模型。在这项工作中,我们提出了Morbo,这是高维搜索空间上多目标BO的可扩展方法。 Morbo通过使用协调策略并行在设计空间的多个局部区域中执行BO来确定全球最佳解决方案。我们表明,Morbo在几种高维综合问题和现实世界应用中的样品效率中的最新效率显着提高,包括光学显示设计问题和146和222参数的车辆设计问题。在这些问题上,如果现有的BO算法无法扩展和表现良好,Morbo为从业者提供了刻度级别的效率,则在当前方法上可以提高样本效率。
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
Performance debugging in production is a fundamental activity in modern service-based systems. The diagnosis of performance issues is often time-consuming, since it requires thorough inspection of large volumes of traces and performance indices. In this paper we present DeLag, a novel automated search-based approach for diagnosing performance issues in service-based systems. DeLag identifies subsets of requests that show, in the combination of their Remote Procedure Call execution times, symptoms of potentially relevant performance issues. We call such symptoms Latency Degradation Patterns. DeLag simultaneously searches for multiple latency degradation patterns while optimizing precision, recall and latency dissimilarity. Experimentation on 700 datasets of requests generated from two microservice-based systems shows that our approach provides better and more stable effectiveness than three state-of-the-art approaches and general purpose machine learning clustering algorithms. DeLag is more effective than all baseline techniques in at least one case study (with p $\leq$ 0.05 and non-negligible effect size). Moreover, DeLag outperforms in terms of efficiency the second and the third most effective baseline techniques on the largest datasets used in our evaluation (up to 22%).
translated by 谷歌翻译
Many real-world problems are usually computationally costly and the objective functions evolve over time. Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems in a static environment whereas it has rarely been studied under dynamic environments. This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems. Specifically, it applies a hierarchical multi-output Gaussian process to capture the correlation between data collected from different time steps with a linearly increased number of hyperparameters. Furthermore, an adaptive source task selection along with a bespoke warm staring initialization mechanisms are proposed to better leverage the knowledge extracted from previous optimization exercises. By doing so, the data-driven evolutionary optimization can jump start the optimization in the new environment with a strictly limited computational budget. Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm against nine state-of-the-art peer algorithms.
translated by 谷歌翻译
大多数情况下,如果不是全部,现代软件系统都是高度可配置的,以对各种利益相关者定制其功能和非功能性质。由于黑盒性质,很难分析和理解其行为,例如关于性能方面的配置选项组合之间的相互作用,特别是推进可控性是非常重要的底层软件系统。本文提出了一种工具,称为Lonviz,这是第一家,促进了对黑匣子可配置软件系统的探索性分析。它从底层系统的配置空间中的系统采样开始。然后LONVIZ通过合成多个采样结果的重复来构建结构稳定的LON。最后,可以从定性和定量观点来到稳定的Lon上进行探索性分析。在实验中,我们选择了四种广泛使用的真实可配置的软件系统,以开发42个不同的运行环境下的基准平台。从我们的实证研究中,我们发现LONVIZ能够进行定性和定量分析,并披露各种有趣的隐藏模式和不同软件系统的属性。
translated by 谷歌翻译
语义已成为遗传编程(GP)研究的关键话题。语义是指在数据集上运行时GP个体的输出(行为)。专注于单目标GP中语义多样性的大多数作品表明它在进化搜索方面是非常有益的。令人惊讶的是,在多目标GP(MOGP)中,在语义中进行了小型研究。在这项工作中,我们跨越我们对Mogp中语义的理解,提出SDO:基于语义的距离作为额外标准。这自然鼓励Mogp中的语义多样性。为此,我们在第一个帕累托前面的较密集的区域(最有前途的前沿)找到一个枢轴。然后,这用于计算枢轴与人群中的每个人之间的距离。然后将所得到的距离用作优化以优化以偏及语义分集的额外标准。我们还使用其他基于语义的方法作为基准,称为基于语义相似性的交叉和语义的拥挤距离。此外,我们也使用NSGA-II和SPEA2进行比较。我们使用高度不平衡二进制分类问题,一致地展示我们所提出的SDO方法如何产生更多非主导的解决方案和更好的多样性,导致更好的统计学显着的结果,与其他四种方法相比,使用超卓越症结果作为评估措施。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
基准套件提供了对进化算法解决问题能力的有用度量,但是组成问题通常太复杂了,无法清洁算法的优势和劣势。在这里,我们介绍了基准套件档案(``进化运行中的选择方案的诊断概述''),以实证分析有关剥削和探索重要方面的选择方案。利用从根本上是攀岩,但我们考虑两种情况:纯剥削,可以独立优化表示形式中的每个位置,并且受到限制的利用,在该位置之间,由于位置之间的相互作用,向上进展更加有限。当优化路径不太清楚时,需要探索;我们认为能够遵循多个独立的爬山途径和跨健身山谷的能力。这些场景的每种组合都会产生独特的适应性景观,有助于表征与给定选择方案相关的进化动力学。我们分析了六个流行的选择方案。锦标赛的选择和截断选择都在剥削指标方面表现出色,但在需要探索时表现不佳;相反,新颖的搜索在探索方面表现出色,但未能利用梯度。在克服欺骗时,健身共享表现良好,但在所有其他诊断方面都很差。非主导的分类是维持由居住在多个Optima居住的个体组成的不同人群的最佳选择,但努力有效利用梯度。词汇酶选择平衡搜索空间探索而不牺牲剥削,通常在诊断方面表现良好。我们的工作证明了诊断对快速建立对选择方案特征的直观理解的价值,然后可以将其用于改进或开发新的选择方法。
translated by 谷歌翻译
自动化的机器学习(AUTOML)过程可能需要通过不仅机器学习(ML)组件及其超参数的复杂配置空间进行搜索,还需要将它们组合在一起,即形成ML管道。如果该管道配置空间过大,那么固定时间预算可实现的优化效率和模型精度可实现。一个关键的研究问题是,通过利用其历史表现来完成各种ML任务(即元知识),避免对ML管道的不良评估是否可能既可能又实用。以前的经验以分类器/回归器准确性排名的形式来自(1)(1)在历史自动运行期间进行的大量但无尽的管道评估数量,即“机会性”元知识,或(2)全面的交叉 - 通过默认超参数(即“系统”的元知识,对分类器/回归器的验证评估。使用AUTOWEKA4MCPS软件包进行了许多实验,表明(1)机会性/系统的元知识可以改善ML的结果,通常与元知识的相关性以及(2)配置空间扣除在不太保守的情况下是最佳的(2)也不是激进的。但是,元知识的效用和影响急性取决于其发电和剥削的许多方面,并保证了广泛的分析;这些通常在汽车和元学习文献中被忽视/不足。特别是,我们观察到对数据集的“挑战”的强烈敏感性,即选择预测因子的特异性是否会导致性能明显更好。最终,确定这样定义的“困难”数据集对于生成信息丰富的元知识基础和理解最佳搜索空间降低策略至关重要。
translated by 谷歌翻译
我们对两个单目标和两个多目标的全局全局优化算法进行了全面的全局灵敏度分析,作为算法配置问题。也就是说,我们研究了超参数对算法的直接效果和与其他超参数的效果的影响的影响质量。使用三种敏感性分析方法Morris LHS,Morris和Sobol,可以系统地分析协方差矩阵适应进化策略,差异进化,非主导的遗传算法III和多目标进化算法的可调型矩阵适应性进化策略,基于框架的分解,基于框架揭示,基于框架的遗传算法,超参数对抽样方法和性能指标的行为。也就是说,它回答了等问题,例如什么超参数会影响模式,它们的互动方式,相互作用的互动程度以及其直接影响程度。因此,超参数的排名表明它们的调整顺序,影响模式揭示了算法的稳定性。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
机器学习系统的设计通常需要交易不同的目标,例如,深度神经网络(DNN)的预测错误和能耗。通常,没有任何单一的设计在所有目标中都表现良好,因此,找到帕累托最佳的设计令人感兴趣。通常,测量不同的目标会产生不同的成本;例如,测量DNN的预测误差的成本比测量预先训练的DNN的能源消耗的数量级高,因为它需要重新训练DNN。当前的最新方法没有考虑到客观评估成本的这种差异,可能会浪费对目标功能的昂贵评估,从而获得很少的信息增益。在本文中,我们开发了一种新颖的分离成本感知方法,我们称为灵活的多目标贝叶斯优化(Flexibo)来解决此问题。 Flexibo通过每个目标的测量成本来加权帕累托区的超量。这有助于我们平衡收集新信息与通过客观评估获得的知识的费用,从而阻止我们几乎没有收益进行昂贵的测量。我们在七个最先进的DNN上评估了图像识别,自然语言处理(NLP)和语音到文本翻译的Flexibo。我们的结果表明,鉴于相同的总实验预算,Flexibo发现的设计比下一个最佳最佳多目标优化方法低4.8%至12.4%,具体取决于特定的DNN体系结构。
translated by 谷歌翻译
当在安全 - 关键系统中使用深层神经网络(DNN)时,工程师应确定在测试过程中观察到的与故障(即错误输出)相关的安全风险。对于DNN处理图像,工程师在视觉上检查所有引起故障的图像以确定它们之间的共同特征。这种特征对应于危害触发事件(例如,低照明),这是安全分析的重要输入。尽管内容丰富,但这种活动却昂贵且容易出错。为了支持此类安全分析实践,我们提出了SEDE,该技术可为失败,现实世界图像中的共同点生成可读的描述,并通过有效的再培训改善DNN。 SEDE利用了通常用于网络物理系统的模拟器的可用性。它依靠遗传算法来驱动模拟器来生成与测试集中诱导失败的现实世界图像相似的图像。然后,它采用规则学习算法来得出以模拟器参数值捕获共同点的表达式。然后,派生表达式用于生成其他图像以重新训练和改进DNN。随着DNN执行车载传感任务,SEDE成功地表征了导致DNN精度下降的危险触发事件。此外,SEDE启用了重新培训,从而导致DNN准确性的显着提高,最高18个百分点。
translated by 谷歌翻译