在本报告中,我们描述了我们提交给Epic-Kitchens Action Action Truecation挑战2022的技术细节。在这项比赛中,我们开发了以下两种方法。1)使用教师模型学到的软标签作为指导学生网络学习预期时间的信息;2)动词名词关系模块,用于建立动词和名词之间的关系。我们的方法在2022年的Epic-Kitchens Action预期挑战的测试集上实现了最新的结果。
translated by 谷歌翻译
近年来,知识蒸馏有显着改善,可以为更好的效率产生紧凑的学生模型,同时保留教师模型的模型效果。以前的研究发现:由于能力不匹配,更准确的教师对更好的教师无需。在本文中,我们旨在通过模型校准的角度分析现象。我们发现较大的教师模型可能过于过度自信,因此学生模型无法有效地模仿。虽然,在教师模型的简单模型校准之后,教师模型的大小与学生模型的性能具有正相关。
translated by 谷歌翻译
在这项工作中,我们将解决方案介绍给Epic-Kitchens-100 2022动作检测挑战。提出了一阶段动作检测变压器(OADT)来对视频段的时间连接进行建模。借助OADT,可以同时识别类别和时间边界。在完成了从不同功能训练的多个OADT模型之后,我们的模型可以达到21.28 \%的动作图,并在操作检测挑战的测试集中排名第一。
translated by 谷歌翻译
尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型尺寸,从而限制了它们在实际情况下的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小模型的不对称知识蒸馏,从而获得了临床就业的微小但准确的模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并实现无损分割性能,参数少250倍。
translated by 谷歌翻译
具有更多参数数量的深卷积神经网络在自然图像上的对象检测任务中提高了精度,其中感兴趣的对象用水平边界框注释。从鸟类视角捕获的航空图像上,这些对模型架构和更深卷积层的改进也可以提高定向对象检测任务的性能。但是,很难直接在设备上使用有限的计算资源应用那些最先进的对象探测器,这需要通过模型压缩来实现轻量级模型。为了解决此问题,我们提出了一种模型压缩方法,用于通过知识蒸馏(即KD-RNET)在空中图像上旋转对象检测。凭借具有大量参数的训练有素的以教师为导向的对象探测器,获得的对象类别和位置信息都通过协作培训策略转移到KD-RNET的紧凑型学生网络中。传输类别信息是通过对预测概率分布的知识蒸馏来实现的,并且在处理位置信息传输中的位移时采用了软回归损失。大规模空中对象检测数据集(DOTA)的实验结果表明,提出的KD-RNET模型可以通过减少参数数量来提高均值平均精度(MAP),同时kd-rnet促进性能增强性能在提供高质量检测的情况下,与地面截然注释的重叠更高。
translated by 谷歌翻译
机器学习中的知识蒸馏是将知识从名为教师的大型模型转移到一个名为“学生”的较小模型的过程。知识蒸馏是将大型网络(教师)压缩到较小网络(学生)的技术之一,该网络可以部署在手机等小型设备中。当教师和学生之间的网络规模差距增加时,学生网络的表现就会下降。为了解决这个问题,在教师模型和名为助教模型的学生模型之间采用了中间模型,这反过来弥补了教师与学生之间的差距。在这项研究中,我们已经表明,使用多个助教模型,可以进一步改进学生模型(较小的模型)。我们使用加权集合学习将这些多个助教模型组合在一起,我们使用了差异评估优化算法来生成权重值。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
在多种方式知识蒸馏研究的背景下,现有方法主要集中在唯一的学习教师最终产出问题。因此,教师网络与学生网络之间存在深处。有必要强制学生网络来学习教师网络的模态关系信息。为了有效利用从教师转移到学生的知识,采用了一种新的模型关系蒸馏范式,通过建模不同的模态之间的关系信息,即学习教师模级克矩阵。
translated by 谷歌翻译
尽管对视频表示学习的自我监督预先预测方法的突出成功,但在未标记的预测数据集很小或源任务(预先训练)中的未标记数据和目标任务中标记的数据(Fineetuning)之间的域差异。为了缓解这些问题,我们提出了一种新的方法来通过基于知识相似性蒸馏,Auxskd的辅助预押阶段补充自我监督预测,以便更好地推广,具有明显较少量的视频数据,例如,动力学-100而不是动力学-400。我们的方法通过捕获未标记的视频数据的段之间的相似信息,将其知识迭代地将其知识蒸发到学生模型。然后,学生模型通过利用此先验知识来解决借口任务。我们还介绍了一种新颖的借口任务,视频段速度预测或VSPP,这需要我们的模型来预测输入视频的随机选择段的播放速度,以提供更可靠的自我监督的表示。我们的实验结果表明,在K100上预先训练时,UCF101和HMDB51数据集的最先进结果卓越。此外,我们表明我们的辅助辅助辅助持久性辅助阶段作为最近的艺术的自我监督方法(例如VideOpace和Rspnet),可以在UCF101和HMDB51上提高结果。我们的代码即将发布。
translated by 谷歌翻译
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
translated by 谷歌翻译
深度学习的巨大成功主要是由于大规模的网络架构和高质量的培训数据。但是,在具有有限的内存和成像能力的便携式设备上部署最近的深层模型仍然挑战。一些现有的作品通过知识蒸馏进行了压缩模型。不幸的是,这些方法不能处理具有缩小图像质量的图像,例如低分辨率(LR)图像。为此,我们采取了开创性的努力,从高分辨率(HR)图像到达将处理LR图像的紧凑型网络模型中学习的繁重网络模型中蒸馏有用的知识,从而推动了新颖的像素蒸馏的当前知识蒸馏技术。为实现这一目标,我们提出了一名教师助理 - 学生(TAS)框架,将知识蒸馏分解为模型压缩阶段和高分辨率表示转移阶段。通过装备新颖的特点超分辨率(FSR)模块,我们的方法可以学习轻量级网络模型,可以实现与重型教师模型相似的准确性,但参数更少,推理速度和较低分辨率的输入。在三个广泛使用的基准,\即,幼崽200-2011,Pascal VOC 2007和ImageNetsub上的综合实验证明了我们方法的有效性。
translated by 谷歌翻译
作为模型压缩的一种有前途的方法,知识蒸馏通过从繁琐的知识转移知识来改善紧凑模型的性能。用于指导学生培训的知识很重要。语义分割中的先前蒸馏方法努力从这些特征中提取各种形式的知识,涉及依靠先前信息并具有有限的性能提高的精心手动设计。在本文中,我们提出了一种称为标准化功能蒸馏(NFD)的简单而有效的特征蒸馏方法,旨在实现原始功能的有效蒸馏,而无需手动设计新的知识形式。关键的想法是防止学生专注于模仿通过归一化的教师特征响应的幅度。我们的方法可获得有关CityScapes,VOC 2012和ADE20K数据集的语义细分的最新蒸馏结果。代码将可用。
translated by 谷歌翻译
Brain-computer interface (BCI) uses brain signals to communicate with external devices without actual control. Particularly, BCI is one of the interfaces for controlling the robotic arm. In this study, we propose a knowledge distillation-based framework to manipulate robotic arm through hybrid paradigm induced EEG signals for practical use. The teacher model is designed to decode input data hierarchically and transfer knowledge to student model. To this end, soft labels and distillation loss functions are applied to the student model training. According to experimental results, student model achieved the best performance among the singular architecture-based methods. It is confirmed that using hierarchical models and knowledge distillation, the performance of a simple architecture can be improved. Since it is uncertain what knowledge is transferred, it is important to clarify this part in future studies.
translated by 谷歌翻译
最初引入了知识蒸馏,以利用来自单一教师模型的额外监督为学生模型培训。为了提高学生表现,最近的一些变体试图利用多个教师利用不同的知识来源。然而,现有研究主要通过对多种教师预测的平均或将它们与其他无标签策略相结合,将知识集成在多种来源中,可能在可能存在低质量的教师预测存在中误导学生。为了解决这个问题,我们提出了信心感知的多教师知识蒸馏(CA-MKD),该知识蒸馏(CA-MKD)在地面真理标签的帮助下,适用于每个教师预测的样本明智的可靠性,与那些接近单热的教师预测标签分配了大量的重量。此外,CA-MKD包含中间层,以进一步提高学生表现。广泛的实验表明,我们的CA-MKD始终如一地优于各种教师学生架构的所有最先进的方法。
translated by 谷歌翻译
Knowledge Distillation (KD) aims to distill the knowledge of a cumbersome teacher model into a lightweight student model. Its success is generally attributed to the privileged information on similarities among categories provided by the teacher model, and in this sense, only strong teacher models are deployed to teach weaker students in practice. In this work, we challenge this common belief by following experimental observations: 1) beyond the acknowledgment that the teacher can improve the student, the student can also enhance the teacher significantly by reversing the KD procedure; 2) a poorly-trained teacher with much lower accuracy than the student can still improve the latter significantly. To explain these observations, we provide a theoretical analysis of the relationships between KD and label smoothing regularization. We prove that 1) KD is a type of learned label smoothing regularization and 2) label smoothing regularization provides a virtual teacher model for KD. From these results, we argue that the success of KD is not fully due to the similarity information between categories from teachers, but also to the regularization of soft targets, which is equally or even more important.Based on these analyses, we further propose a novel Teacher-free Knowledge Distillation (Tf-KD) framework, where a student model learns from itself or manuallydesigned regularization distribution. The Tf-KD achieves comparable performance with normal KD from a superior teacher, which is well applied when a stronger teacher model is unavailable. Meanwhile, Tf-KD is generic and can be directly deployed for training deep neural networks. Without any extra computation cost, Tf-KD achieves up to 0.65% improvement on ImageNet over well-established baseline models, which is superior to label smoothing regularization.
translated by 谷歌翻译
基于可穿戴传感器的人类动作识别(HAR)最近取得了杰出的成功。但是,基于可穿戴传感器的HAR的准确性仍然远远落后于基于视觉模式的系统(即RGB视频,骨架和深度)。多样化的输入方式可以提供互补的提示,从而提高HAR的准确性,但是如何利用基于可穿戴传感器的HAR的多模式数据的优势很少探索。当前,可穿戴设备(即智能手表)只能捕获有限的非视态模式数据。这阻碍了多模式HAR关联,因为它无法同时使用视觉和非视态模态数据。另一个主要挑战在于如何在有限的计算资源上有效地利用可穿戴设备上的多模式数据。在这项工作中,我们提出了一种新型的渐进骨骼到传感器知识蒸馏(PSKD)模型,该模型仅利用时间序列数据,即加速度计数据,从智能手表来解决基于可穿戴传感器的HAR问题。具体而言,我们使用来自教师(人类骨架序列)和学生(时间序列加速度计数据)模式的数据构建多个教师模型。此外,我们提出了一种有效的渐进学习计划,以消除教师和学生模型之间的绩效差距。我们还设计了一种称为自适应信心语义(ACS)的新型损失功能,以使学生模型可以自适应地选择其中一种教师模型或所需模拟的地面真实标签。为了证明我们提出的PSKD方法的有效性,我们对伯克利-MHAD,UTD-MHAD和MMACT数据集进行了广泛的实验。结果证实,与以前的基于单传感器的HAR方法相比,提出的PSKD方法具有竞争性能。
translated by 谷歌翻译
In this paper, we propose Stochastic Knowledge Distillation (SKD) to obtain compact BERT-style language model dubbed SKDBERT. In each iteration, SKD samples a teacher model from a pre-defined teacher ensemble, which consists of multiple teacher models with multi-level capacities, to transfer knowledge into student model in an one-to-one manner. Sampling distribution plays an important role in SKD. We heuristically present three types of sampling distributions to assign appropriate probabilities for multi-level teacher models. SKD has two advantages: 1) it can preserve the diversities of multi-level teacher models via stochastically sampling single teacher model in each iteration, and 2) it can also improve the efficacy of knowledge distillation via multi-level teacher models when large capacity gap exists between the teacher model and the student model. Experimental results on GLUE benchmark show that SKDBERT reduces the size of a BERT$_{\rm BASE}$ model by 40% while retaining 99.5% performances of language understanding and being 100% faster.
translated by 谷歌翻译
随着AI芯片(例如GPU,TPU和NPU)的改进以及物联网(IOT)的快速发展,一些强大的深神经网络(DNN)通常由数百万甚至数亿个参数组成,这些参数是可能不适合直接部署在低计算和低容量单元(例如边缘设备)上。最近,知识蒸馏(KD)被认为是模型压缩的有效方法之一,以减少模型参数。 KD的主要概念是从大型模型(即教师模型)的特征图中提取有用的信息,以引用成功训练一个小型模型(即学生模型),该模型大小比老师小得多。尽管已经提出了许多基于KD的方法来利用教师模型中中间层的特征图中的信息,但是,它们中的大多数并未考虑教师模型和学生模型之间的特征图的相似性,这可能让学生模型学习无用的信息。受到注意机制的启发,我们提出了一种新颖的KD方法,称为代表教师钥匙(RTK),该方法不仅考虑了特征地图的相似性,而且还会过滤掉无用的信息以提高目标学生模型的性能。在实验中,我们使用多个骨干网络(例如Resnet和wideresnet)和数据集(例如CIFAR10,CIFAR100,SVHN和CINIC10)验证了我们提出的方法。结果表明,我们提出的RTK可以有效地提高基于注意的KD方法的分类精度。
translated by 谷歌翻译
场景图生成(SGG)任务旨在在给定图像中检测所有对象及其成对的视觉关系。尽管SGG在过去几年中取得了显着的进展,但几乎所有现有的SGG模型都遵循相同的训练范式:他们将SGG中的对象和谓词分类视为单标签分类问题,而地面真实性是一个hot目标。标签。但是,这种普遍的训练范式忽略了当前SGG数据集的两个特征:1)对于正样本,某些特定的主题对象实例可能具有多个合理的谓词。 2)对于负样本,有许多缺失的注释。不管这两个特征如何,SGG模型都很容易被混淆并做出错误的预测。为此,我们为无偏SGG提出了一种新颖的模型不合命相的标签语义知识蒸馏(LS-KD)。具体而言,LS-KD通过将预测的标签语义分布(LSD)与其原始的单热目标标签融合来动态生成每个主题对象实例的软标签。 LSD反映了此实例和多个谓词类别之间的相关性。同时,我们提出了两种不同的策略来预测LSD:迭代自我KD和同步自我KD。大量的消融和对三项SGG任务的结果证明了我们所提出的LS-KD的优势和普遍性,这些LS-KD可以始终如一地实现不同谓词类别之间的不错的权衡绩效。
translated by 谷歌翻译
自我监督的学习在视力和NLP方面取得了巨大进展。最近,它也引起了人们对X射线,CT和MRI等各种医学成像方式的广泛关注。现有方法主要集中于构建新的借口自学任务,例如根据医学图像的属性进行重建,方向和掩盖识别。但是,并未完全利用公开可用的自我实施模型。在本文中,我们提出了一个强大而有效的自学框架,用于外科视频理解。我们的主要见解是将知识从大型通用数据集中培训的公开模型中提取知识,以促进对手术视频的自我监督学习。为此,我们首先引入了一种传承语义的培训计划,以获取我们的教师模型,该模型不仅包含了公开可用模型的语义,而且还可以为手术数据提供准确的知识。除了仅具有对比度学习的培训外,我们还引入了一个蒸馏目标,将丰富的学习信息从教师模型转移到手术数据上的自学学习。对两个手术期识别基准的广泛实验表明,我们的框架可以显着提高现有的自我监督学习方法的性能。值得注意的是,我们的框架在低DATA制度下表现出了令人信服的优势。我们的代码可在https://github.com/xmed-lab/distillingself上找到。
translated by 谷歌翻译