具有更多参数数量的深卷积神经网络在自然图像上的对象检测任务中提高了精度,其中感兴趣的对象用水平边界框注释。从鸟类视角捕获的航空图像上,这些对模型架构和更深卷积层的改进也可以提高定向对象检测任务的性能。但是,很难直接在设备上使用有限的计算资源应用那些最先进的对象探测器,这需要通过模型压缩来实现轻量级模型。为了解决此问题,我们提出了一种模型压缩方法,用于通过知识蒸馏(即KD-RNET)在空中图像上旋转对象检测。凭借具有大量参数的训练有素的以教师为导向的对象探测器,获得的对象类别和位置信息都通过协作培训策略转移到KD-RNET的紧凑型学生网络中。传输类别信息是通过对预测概率分布的知识蒸馏来实现的,并且在处理位置信息传输中的位移时采用了软回归损失。大规模空中对象检测数据集(DOTA)的实验结果表明,提出的KD-RNET模型可以通过减少参数数量来提高均值平均精度(MAP),同时kd-rnet促进性能增强性能在提供高质量检测的情况下,与地面截然注释的重叠更高。
translated by 谷歌翻译
Despite significant accuracy improvement in convolutional neural networks (CNN) based object detectors, they often require prohibitive runtimes to process an image for real-time applications. State-of-the-art models often use very deep networks with a large number of floating point operations. Efforts such as model compression learn compact models with fewer number of parameters, but with much reduced accuracy. In this work, we propose a new framework to learn compact and fast object detection networks with improved accuracy using knowledge distillation [20] and hint learning [34]. Although knowledge distillation has demonstrated excellent improvements for simpler classification setups, the complexity of detection poses new challenges in the form of regression, region proposals and less voluminous labels. We address this through several innovations such as a weighted cross-entropy loss to address class imbalance, a teacher bounded loss to handle the regression component and adaptation layers to better learn from intermediate teacher distributions. We conduct comprehensive empirical evaluation with different distillation configurations over multiple datasets including PASCAL, KITTI, ILSVRC and MS-COCO. Our results show consistent improvement in accuracy-speed trade-offs for modern multi-class detection models.
translated by 谷歌翻译
机器学习中的知识蒸馏是将知识从名为教师的大型模型转移到一个名为“学生”的较小模型的过程。知识蒸馏是将大型网络(教师)压缩到较小网络(学生)的技术之一,该网络可以部署在手机等小型设备中。当教师和学生之间的网络规模差距增加时,学生网络的表现就会下降。为了解决这个问题,在教师模型和名为助教模型的学生模型之间采用了中间模型,这反过来弥补了教师与学生之间的差距。在这项研究中,我们已经表明,使用多个助教模型,可以进一步改进学生模型(较小的模型)。我们使用加权集合学习将这些多个助教模型组合在一起,我们使用了差异评估优化算法来生成权重值。
translated by 谷歌翻译
现实世界中的对象检测模型应便宜且准确。知识蒸馏(KD)可以通过利用大型教师模型的有用信息来提高小型,廉价检测模型的准确性。但是,一个关键的挑战是确定老师进行蒸馏产生的最有用的功能。在这项工作中,我们表明,在地面边界框中只有一小部分功能才是老师的高检测性能。基于此,我们提出了预测引导的蒸馏(PGD),该蒸馏将蒸馏放在教师的这些关键预测区域上,并在许多现有的KD基准方面的性能取得了可观的增长。此外,我们建议对关键区域进行自适应加权方案,以平滑其影响力并取得更好的性能。我们提出的方法在各种高级一阶段检测体系中的当前最新KD基准都优于当前的最新KD基线。具体而言,在可可数据集上,我们的方法分别使用RESNET-101和RESNET-50作为教师和学生骨架,在 +3.1%和 +4.6%的AP改进之间达到了AP的改善。在CrowdHuman数据集上,我们还使用这些骨架,在MR和AP上取得了 +3.2%和 +2.0%的提高。我们的代码可在https://github.com/chenhongyiyang/pgd上找到。
translated by 谷歌翻译
Previous knowledge distillation (KD) methods for object detection mostly focus on feature imitation instead of mimicking the prediction logits due to its inefficiency in distilling the localization information. In this paper, we investigate whether logit mimicking always lags behind feature imitation. Towards this goal, we first present a novel localization distillation (LD) method which can efficiently transfer the localization knowledge from the teacher to the student. Second, we introduce the concept of valuable localization region that can aid to selectively distill the classification and localization knowledge for a certain region. Combining these two new components, for the first time, we show that logit mimicking can outperform feature imitation and the absence of localization distillation is a critical reason for why logit mimicking underperforms for years. The thorough studies exhibit the great potential of logit mimicking that can significantly alleviate the localization ambiguity, learn robust feature representation, and ease the training difficulty in the early stage. We also provide the theoretical connection between the proposed LD and the classification KD, that they share the equivalent optimization effect. Our distillation scheme is simple as well as effective and can be easily applied to both dense horizontal object detectors and rotated object detectors. Extensive experiments on the MS COCO, PASCAL VOC, and DOTA benchmarks demonstrate that our method can achieve considerable AP improvement without any sacrifice on the inference speed. Our source code and pretrained models are publicly available at https://github.com/HikariTJU/LD.
translated by 谷歌翻译
Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST}) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), which is an innovative idea for realizing lightweight through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module to obtain the optimal bit width automatically under a constrained condition where a threshold for distribution distance between the center and samples is applied in the weight value search space. Third, in order to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network a ability of self-judgment. A switch control machine (SCM) builds a bridge between the student network and teacher network in the same location to help the teacher to reduce wrong guidance and impart vital knowledge to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
translated by 谷歌翻译
知识蒸馏(KD)目睹了其在物体检测中学习紧凑型号的强大能力。以前的KD方法用于对象检测主要是侧重于模仿仿地区内的深度特征,而不是模仿分类登录,而不是蒸馏定位信息的低效率。在本文中,通过重新制定本地化的知识蒸馏过程,我们提出了一种新的本地化蒸馏(LD)方法,可以有效地将老师的本地化知识转移给学生。此外,我们还启发式介绍了有价值的本地化区域的概念,可以帮助选择性地蒸馏某个地区的语义和本地化知识。第一次结合这两个新组件,我们显示Logit Mimicing可以优于特征模仿和本地化知识蒸馏比蒸馏对象探测器的语义知识更为重要和有效。我们的蒸馏方案简单,有效,可以很容易地应用于不同的致密物体探测器。实验表明,我们的LD可以将GFOCal-Reset-50的AP得分提升,单一规模的1 $ \ Times $培训计划从Coco基准测试中的40.1到42.1,没有任何牺牲品推断速度。我们的源代码和培训的型号在https://github.com/hikaritju/ld公开提供
translated by 谷歌翻译
用于对象检测的常规知识蒸馏(KD)方法主要集中于同质的教师学生探测器。但是,用于部署的轻质检测器的设计通常与高容量探测器显着不同。因此,我们研究了异构教师对之间的KD,以进行广泛的应用。我们观察到,异质KD(异核KD)的核心难度是由于不同优化的方式而导致异质探测器的主链特征之间的显着语义差距。常规的同质KD(HOMO-KD)方法遭受了这种差距的影响,并且很难直接获得异性KD的令人满意的性能。在本文中,我们提出了异助剂蒸馏(Head)框架,利用异质检测头作为助手来指导学生探测器的优化以减少此间隙。在头上,助手是一个额外的探测头,其建筑与学生骨干的老师负责人同质。因此,将异源KD转变为同性恋,从而可以从老师到学生的有效知识转移。此外,当训练有素的教师探测器不可用时,我们将头部扩展到一个无教师的头(TF-Head)框架。与当前检测KD方法相比,我们的方法已取得了显着改善。例如,在MS-COCO数据集上,TF-Head帮助R18视网膜实现33.9 MAP(+2.2),而Head将极限进一步推到36.2 MAP(+4.5)。
translated by 谷歌翻译
近年来,大规模的深层模型取得了巨大的成功,但巨大的计算复杂性和大规模的存储要求使其在资源限制设备中部署它们是一个巨大的挑战。作为模型压缩和加速度方法,知识蒸馏通过从教师探测器转移黑暗知识有效提高了小型模型的性能。然而,大多数基于蒸馏的检测方法主要模仿近边界盒附近的特征,这遭受了两个限制。首先,它们忽略边界盒外面的有益特征。其次,这些方法模仿一些特征,这些特征被教师探测器被错误地被视为背景。为了解决上述问题,我们提出了一种新颖的特征性 - 丰富的评分(FRS)方法,可以选择改善蒸馏过程中的广义可检测性的重要特征。所提出的方法有效地检索边界盒外面的重要特征,并消除边界盒内的有害特征。广泛的实验表明,我们的方法在基于锚和无锚探测器上实现了出色的性能。例如,具有Reset-50的RetinAnet在Coco2017数据集上达到39.7%,甚至超过基于Reset-101的教师检测器38.9%甚至超过0.8%。
translated by 谷歌翻译
Knowledge Distillation (KD) aims to distill the knowledge of a cumbersome teacher model into a lightweight student model. Its success is generally attributed to the privileged information on similarities among categories provided by the teacher model, and in this sense, only strong teacher models are deployed to teach weaker students in practice. In this work, we challenge this common belief by following experimental observations: 1) beyond the acknowledgment that the teacher can improve the student, the student can also enhance the teacher significantly by reversing the KD procedure; 2) a poorly-trained teacher with much lower accuracy than the student can still improve the latter significantly. To explain these observations, we provide a theoretical analysis of the relationships between KD and label smoothing regularization. We prove that 1) KD is a type of learned label smoothing regularization and 2) label smoothing regularization provides a virtual teacher model for KD. From these results, we argue that the success of KD is not fully due to the similarity information between categories from teachers, but also to the regularization of soft targets, which is equally or even more important.Based on these analyses, we further propose a novel Teacher-free Knowledge Distillation (Tf-KD) framework, where a student model learns from itself or manuallydesigned regularization distribution. The Tf-KD achieves comparable performance with normal KD from a superior teacher, which is well applied when a stronger teacher model is unavailable. Meanwhile, Tf-KD is generic and can be directly deployed for training deep neural networks. Without any extra computation cost, Tf-KD achieves up to 0.65% improvement on ImageNet over well-established baseline models, which is superior to label smoothing regularization.
translated by 谷歌翻译
知识蒸馏已成功应用于图像分类。然而,物体检测更复杂,大多数知识蒸馏方法都失败了。在本文中,我们指出,在物体检测中,教师和学生的特征在不同的区域变化,特别是在前景和背景中。如果我们同样蒸馏它们,则特征图之间的不均匀差异会对蒸馏产生负面影响。因此,我们提出了焦点和全球蒸馏(FGD)。焦蒸馏分离前景和背景,强迫学生专注于教师的临界像素和渠道。全球蒸馏重建了不同像素之间的关系,并将其从教师转移给学生,弥补了局灶性蒸馏中缺失的全球信息。由于我们的方法仅需要计算特征图上的损失,因此FGD可以应用于各种探测器。我们在不同骨干网上进行各种探测器,结果表明,学生探测器实现了优异的地图改进。例如,基于Reset-50基于RecinAnet,更快的RCNN,Reppoints和Mask RCNN,Coco2017上达到40.7%,42.0%,42.0%和42.1%地图,3.3,3.6,3.4和2.9高于基线,分别。我们的代码可在https://github.com/yzd-v/fgd获得。
translated by 谷歌翻译
In recent years, Siamese network based trackers have significantly advanced the state-of-the-art in real-time tracking. Despite their success, Siamese trackers tend to suffer from high memory costs, which restrict their applicability to mobile devices with tight memory budgets. To address this issue, we propose a distilled Siamese tracking framework to learn small, fast and accurate trackers (students), which capture critical knowledge from large Siamese trackers (teachers) by a teacher-students knowledge distillation model. This model is intuitively inspired by the one teacher vs. multiple students learning method typically employed in schools. In particular, our model contains a single teacher-student distillation module and a student-student knowledge sharing mechanism. The former is designed using a tracking-specific distillation strategy to transfer knowledge from a teacher to students. The latter is utilized for mutual learning between students to enable in-depth knowledge understanding. Extensive empirical evaluations on several popular Siamese trackers demonstrate the generality and effectiveness of our framework. Moreover, the results on five tracking benchmarks show that the proposed distilled trackers achieve compression rates of up to 18$\times$ and frame-rates of $265$ FPS, while obtaining comparable tracking accuracy compared to base models.
translated by 谷歌翻译
尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型尺寸,从而限制了它们在实际情况下的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小模型的不对称知识蒸馏,从而获得了临床就业的微小但准确的模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并实现无损分割性能,参数少250倍。
translated by 谷歌翻译
主流对象检测器通常由两个子任务组成,包括由两个并行头部实现的分类和回归任务。这种经典的设计范式不可避免地会导致分类得分和本地化质量(IOU)之间的空间分布不一致。因此,本文从知识蒸馏的角度来减轻这种错位。首先,我们观察到,与轻量级学生相比,庞大的老师获得的和谐预测比例更高。基于这个有趣的观察,设计了一种新颖的和谐评分(HS),以估计分类和回归质量的一致性。 HS对两个子任务之间的关系进行建模,并被视为先验知识,以促进学生的和谐预测。其次,这种空间未对准将在提炼特征时会导致选择性区域的选择。为了减轻这个问题,通过灵活平衡分类和回归任务的贡献,提出了一种新颖的任务功能蒸馏(TFD)。最终,HD和TFD构成了所提出的方法,称为任务均衡蒸馏(TBD)。广泛的实验证明了该方法的巨大潜力和概括。具体而言,当配备TBD时,带有Resnet-50的视网膜在可可基准下获得41.0地图,表现优于最近的FGD和FRS。
translated by 谷歌翻译
知识蒸馏(KD)显示了其对象检测的有效性,在AI知识(教师检测器)和人类知识(人类专家)的监督下,它在该物体检测中训练紧凑的对象检测器。但是,现有研究一致地对待AI知识和人类知识,并在学习过程中采用统一的数据增强策略,这将导致对多尺度对象的学习有偏见,并且对教师探测器的学习不足,从而导致不满意的蒸馏性能。为了解决这些问题,我们提出了特定于样本的数据增强和对抗性功能增强。首先,为了减轻多尺度对象产生的影响,我们根据傅立叶角度的观察结果提出了自适应数据增强。其次,我们提出了一种基于对抗性示例的功能增强方法,以更好地模仿AI知识以弥补教师探测器的信息不足。此外,我们提出的方法是统一的,并且很容易扩展到其他KD方法。广泛的实验证明了我们的框架的有效性,并在一阶段和两阶段探测器中提高了最先进方法的性能,最多可以带来0.5 MAP的增长。
translated by 谷歌翻译
Recently, large-scale pre-trained models have shown their advantages in many tasks. However, due to the huge computational complexity and storage requirements, it is challenging to apply the large-scale model to real scenes. A common solution is knowledge distillation which regards the large-scale model as a teacher model and helps to train a small student model to obtain a competitive performance. Cross-task Knowledge distillation expands the application scenarios of the large-scale pre-trained model. Existing knowledge distillation works focus on directly mimicking the final prediction or the intermediate layers of the teacher model, which represent the global-level characteristics and are task-specific. To alleviate the constraint of different label spaces, capturing invariant intrinsic local object characteristics (such as the shape characteristics of the leg and tail of the cattle and horse) plays a key role. Considering the complexity and variability of real scene tasks, we propose a Prototype-guided Cross-task Knowledge Distillation (ProC-KD) approach to transfer the intrinsic local-level object knowledge of a large-scale teacher network to various task scenarios. First, to better transfer the generalized knowledge in the teacher model in cross-task scenarios, we propose a prototype learning module to learn from the essential feature representation of objects in the teacher model. Secondly, for diverse downstream tasks, we propose a task-adaptive feature augmentation module to enhance the features of the student model with the learned generalization prototype features and guide the training of the student model to improve its generalization ability. The experimental results on various visual tasks demonstrate the effectiveness of our approach for large-scale model cross-task knowledge distillation scenes.
translated by 谷歌翻译
场景图生成(SGG)任务旨在在给定图像中检测所有对象及其成对的视觉关系。尽管SGG在过去几年中取得了显着的进展,但几乎所有现有的SGG模型都遵循相同的训练范式:他们将SGG中的对象和谓词分类视为单标签分类问题,而地面真实性是一个hot目标。标签。但是,这种普遍的训练范式忽略了当前SGG数据集的两个特征:1)对于正样本,某些特定的主题对象实例可能具有多个合理的谓词。 2)对于负样本,有许多缺失的注释。不管这两个特征如何,SGG模型都很容易被混淆并做出错误的预测。为此,我们为无偏SGG提出了一种新颖的模型不合命相的标签语义知识蒸馏(LS-KD)。具体而言,LS-KD通过将预测的标签语义分布(LSD)与其原始的单热目标标签融合来动态生成每个主题对象实例的软标签。 LSD反映了此实例和多个谓词类别之间的相关性。同时,我们提出了两种不同的策略来预测LSD:迭代自我KD和同步自我KD。大量的消融和对三项SGG任务的结果证明了我们所提出的LS-KD的优势和普遍性,这些LS-KD可以始终如一地实现不同谓词类别之间的不错的权衡绩效。
translated by 谷歌翻译
深度学习的巨大成功主要是由于大规模的网络架构和高质量的培训数据。但是,在具有有限的内存和成像能力的便携式设备上部署最近的深层模型仍然挑战。一些现有的作品通过知识蒸馏进行了压缩模型。不幸的是,这些方法不能处理具有缩小图像质量的图像,例如低分辨率(LR)图像。为此,我们采取了开创性的努力,从高分辨率(HR)图像到达将处理LR图像的紧凑型网络模型中学习的繁重网络模型中蒸馏有用的知识,从而推动了新颖的像素蒸馏的当前知识蒸馏技术。为实现这一目标,我们提出了一名教师助理 - 学生(TAS)框架,将知识蒸馏分解为模型压缩阶段和高分辨率表示转移阶段。通过装备新颖的特点超分辨率(FSR)模块,我们的方法可以学习轻量级网络模型,可以实现与重型教师模型相似的准确性,但参数更少,推理速度和较低分辨率的输入。在三个广泛使用的基准,\即,幼崽200-2011,Pascal VOC 2007和ImageNetsub上的综合实验证明了我们方法的有效性。
translated by 谷歌翻译
人员搜索是人重新识别(RE-ID)的扩展任务。但是,大多数现有的一步人搜索工作尚未研究如何使用现有的高级RE-ID模型来提高由于人员检测和重新ID的集成而促进了一步人搜索性能。为了解决这个问题,我们提出了更快,更强大的一步人搜索框架,教师导师的解解网络(TDN),使单步搜索享受现有的重新ID研究的优点。所提出的TDN可以通过将高级人的RE-ID知识转移到人员搜索模型来显着提高人员搜索性能。在提议的TDN中,为了从重新ID教师模型到单步搜索模型的更好的知识转移,我们通过部分解除两个子任务来设计一个强大的一步人搜索基础框架。此外,我们提出了一种知识转移桥模块,以弥合在重新ID模型和一步人搜索模型之间不同的输入格式引起的比例差距。在测试期间,我们进一步提出了与上下文人员战略的排名来利用全景图像中的上下文信息以便更好地检索。两个公共人员搜索数据集的实验证明了该方法的有利性能。
translated by 谷歌翻译
随着AI芯片(例如GPU,TPU和NPU)的改进以及物联网(IOT)的快速发展,一些强大的深神经网络(DNN)通常由数百万甚至数亿个参数组成,这些参数是可能不适合直接部署在低计算和低容量单元(例如边缘设备)上。最近,知识蒸馏(KD)被认为是模型压缩的有效方法之一,以减少模型参数。 KD的主要概念是从大型模型(即教师模型)的特征图中提取有用的信息,以引用成功训练一个小型模型(即学生模型),该模型大小比老师小得多。尽管已经提出了许多基于KD的方法来利用教师模型中中间层的特征图中的信息,但是,它们中的大多数并未考虑教师模型和学生模型之间的特征图的相似性,这可能让学生模型学习无用的信息。受到注意机制的启发,我们提出了一种新颖的KD方法,称为代表教师钥匙(RTK),该方法不仅考虑了特征地图的相似性,而且还会过滤掉无用的信息以提高目标学生模型的性能。在实验中,我们使用多个骨干网络(例如Resnet和wideresnet)和数据集(例如CIFAR10,CIFAR100,SVHN和CINIC10)验证了我们提出的方法。结果表明,我们提出的RTK可以有效地提高基于注意的KD方法的分类精度。
translated by 谷歌翻译