在这项工作中,我们将解决方案介绍给Epic-Kitchens-100 2022动作检测挑战。提出了一阶段动作检测变压器(OADT)来对视频段的时间连接进行建模。借助OADT,可以同时识别类别和时间边界。在完成了从不同功能训练的多个OADT模型之后,我们的模型可以达到21.28 \%的动作图,并在操作检测挑战的测试集中排名第一。
translated by 谷歌翻译
该技术报告介绍了我们在CVPR-2022 AcitivityNet Challenge中为时间动作检测任务的第一名获胜解决方案。该任务旨在通过长期未经修剪的视频中的特定类别定位动作实例的时间界。最近的主流尝试基于密集的边界匹配,并列举所有可能的组合以产生建议。我们认为,生成的提案包含丰富的上下文信息,这可能会受益于检测信心预测。为此,我们的方法主要包括以下三个步骤:1)慢速,CSN,TimesFormer,TSP,i3d-Flow,i3d-flow,vggish-audio,tpn和vivit的动作分类和特征提取; 2)提案生成。我们提出的上下文感知建议网络(CPN)建立在BMN,GTAD和PRN之上,以通过随机掩盖某些建议功能来汇总上下文信息。 3)动作检测。最终检测预测是通过分配具有相应视频级分类结果的建议来计算的。最后,我们在不同的功能组合设置下将结果整合在一起,并在测试集中实现45.8%的性能,从而将CVPR-2021 ActivityNet挑战的冠军结果提高了1.1%。
translated by 谷歌翻译
基于自我注意力的变压器模型已显示出令人印象深刻的图像分类和对象检测结果,并且最近用于视频理解。受此成功的启发,我们研究了变压器网络在视频中的时间动作本地化的应用。为此,我们提出了ActionFormer,这是一个简单而强大的模型,可在不使用动作建议或依靠预定义的锚点窗口中识别其及时识别其类别并识别其类别。 ActionFormer将多尺度特征表示与局部自我发作相结合,并使用轻加权解码器对每个时刻进行分类并估算相应的动作边界。我们表明,这种精心策划的设计会在先前的工作中进行重大改进。如果没有铃铛和口哨声,ActionFormer在Thumos14上的TIOU = 0.5的地图达到了71.0%的地图,表现优于最佳先前模型的绝对百分比14.1。此外,ActionFormer在ActivityNet 1.3(平均地图36.6%)和Epic-Kitchens 100(+先前工作的平均地图+13.5%)上显示出很强的结果。我们的代码可从http://github.com/happyharrycn/actionformer_release获得。
translated by 谷歌翻译
时间动作定位中的大多数现代方法将此问题分为两个部分:(i)短期特征提取和(ii)远程时间边界定位。由于处理长期未修剪的视频引起的GPU内存成本很高,因此许多方法通过冷冻骨干或使用小型空间视频分辨率来牺牲短期功能提取器的代表力。由于最近的视频变压器模型,其中许多具有二次记忆复杂性,这个问题变得更糟。为了解决这些问题,我们提出了TallFormer,这是一种具有长期内存的记忆效率和端到端的可训练时间动作定位变压器。我们的长期记忆机制消除了在每个训练迭代期间处理数百个冗余视频帧的需求,从而大大减少了GPU的记忆消耗和训练时间。这些效率节省使我们(i)可以使用功能强大的视频变压器提取器,而无需冷冻主链或减少空间视频分辨率,而(ii)也保持了远距离的时间边界定位能力。只有RGB框架作为输入,没有外部动作识别分类器,TallFormer的表现优于先前的最先前的边距,在Thumos14上获得了59.1%的平均地图,而ActivityNet-1.3的平均地图为35.6%。该代码可公开:https://github.com/klauscc/tallformer。
translated by 谷歌翻译
该报告描述了我们对2022 Epic-Kitchens Action识别挑战的获胜解决方案背后的方法。我们的方法基于我们最近的工作,视频识别的多视图变压器(MTV),并将其适应多模式输入。我们的最终提交由多模式MTV(M&M)模型的合奏组成,它改变了主链尺寸和输入方式。我们的方法在动作类中的测试集上达到了52.8%的TOP-1准确性,比去年的获胜参赛作品高4.1%。
translated by 谷歌翻译
在Enocentric视频中,行动在快速连续中发生。我们利用了行动的时间背景,并提出了一种学习参加周围行动的方法,以提高识别性能。为了纳入时间上下文,我们提出了一种基于变换器的多模式模型,可将视频和音频作为输入模式摄取,具有显式语言模型,提供动作序列上下文来增强预测。我们在史诗厨房和EGTEA数据集上测试我们的方法,报告最先进的性能。我们的消融展示了利用时间上下文的优势以及将音频输入模态和语言模型结合到Rescore预测。代码和模型在:https://github.com/ekazakos/mtcn。
translated by 谷歌翻译
最近,视频变压器在视频理解方面取得了巨大成功,超过了CNN性能;然而,现有的视频变换器模型不会明确地模拟对象,尽管对象对于识别操作至关重要。在这项工作中,我们呈现对象区域视频变换器(Orvit),一个\ emph {对象为中心}方法,它与直接包含对象表示的块扩展视频变压器图层。关键的想法是从早期层开始融合以对象形式的表示,并将它们传播到变压器层中,从而影响整个网络的时空表示。我们的orvit块由两个对象级流组成:外观和动态。在外观流中,“对象区域关注”模块在修补程序上应用自我关注和\ emph {对象区域}。以这种方式,Visual对象区域与统一修补程序令牌交互,并通过上下文化对象信息来丰富它们。我们通过单独的“对象 - 动态模块”进一步模型对象动态,捕获轨迹交互,并显示如何集成两个流。我们在四个任务和五个数据集中评估我们的模型:在某事物中的某些问题和几次射击动作识别,以及在AVA上的某些时空动作检测,以及在某种东西上的标准动作识别 - 某种东西 - 东西,潜水48和EPIC-Kitchen100。我们在考虑的所有任务和数据集中展示了强大的性能改进,展示了将对象表示的模型的值集成到变压器体系结构中。对于代码和预用模型,请访问项目页面\ url {https://roeiherz.github.io/orvit/}
translated by 谷歌翻译
We introduce the Action Transformer model for recognizing and localizing human actions in video clips. We repurpose a Transformer-style architecture to aggregate features from the spatiotemporal context around the person whose actions we are trying to classify. We show that by using high-resolution, person-specific, class-agnostic queries, the model spontaneously learns to track individual people and to pick up on semantic context from the actions of others. Additionally its attention mechanism learns to emphasize hands and faces, which are often crucial to discriminate an action -all without explicit supervision other than boxes and class labels. We train and test our Action Transformer network on the Atomic Visual Actions (AVA) dataset, outperforming the state-of-the-art by a significant margin using only raw RGB frames as input.
translated by 谷歌翻译
Modeling the visual changes that an action brings to a scene is critical for video understanding. Currently, CNNs process one local neighbourhood at a time, thus contextual relationships over longer ranges, while still learnable, are indirect. We present TROI, a plug-and-play module for CNNs to reason between mid-level feature representations that are otherwise separated in space and time. The module relates localized visual entities such as hands and interacting objects and transforms their corresponding regions of interest directly in the feature maps of convolutional layers. With TROI, we achieve state-of-the-art action recognition results on the large-scale datasets Something-Something-V2 and EPIC-Kitchens-100.
translated by 谷歌翻译
动作检测的任务旨在在每个动作实例中同时推论动作类别和终点的本地化。尽管Vision Transformers推动了视频理解的最新进展,但由于在长时间的视频剪辑中,设计有效的架构以进行动作检测是不平凡的。为此,我们提出了一个有效的层次时空时空金字塔变压器(STPT)进行动作检测,这是基于以下事实:变压器中早期的自我注意力层仍然集中在局部模式上。具体而言,我们建议在早期阶段使用本地窗口注意来编码丰富的局部时空时空表示,同时应用全局注意模块以捕获后期的长期时空依赖性。通过这种方式,我们的STPT可以用冗余的大大减少来编码区域和依赖性,从而在准确性和效率之间进行有希望的权衡。例如,仅使用RGB输入,提议的STPT在Thumos14上获得了53.6%的地图,超过10%的I3D+AFSD RGB模型超过10%,并且对使用其他流量的额外流动功能的表现较少,该流量具有31%的GFLOPS ,它是一个有效,有效的端到端变压器框架,用于操作检测。
translated by 谷歌翻译
时间动作本地化(TAL)是识别视频中一组动作的任务,该任务涉及将开始和终点定位并对每个操作实例进行分类。现有方法通过使用预定义的锚窗或启发式自下而上的边界匹配策略来解决此任务,这些策略是推理时间的主要瓶颈。此外,主要的挑战是由于缺乏全球上下文信息而无法捕获远程动作。在本文中,我们介绍了一个无锚的框架,称为HTNET,该框架预测了一组<开始时间,结束时间,类,类>三胞胎,这些视频基于变压器体系结构。在预测粗边界之后,我们通过背景特征采样(BFS)模块和分层变压器对其进行完善,这使我们的模型能够汇总全局上下文信息,并有效利用视频中固有的语义关系。我们演示了我们的方法如何在两个TAL基准数据集上定位准确的动作实例并实现最先进的性能:Thumos14和ActivityNet 1.3。
translated by 谷歌翻译
时间行动提案生成(TAPG)是一个具有挑战性的任务,旨在在具有时间边界的未经监控视频中找到动作实例。为了评估提案的信任,现有的作品通常预测建议与地面真理之间的时间交叉联盟(TIOO)监督的提案的行动得分。在本文中,我们通过利用背景预测得分来限制提案的信心,创新地提出了一般的辅助背景约束理念,以进一步抑制低质量的建议。以这种方式,可以轻松地将背景约束概念用于现有的TAPG方法(例如,BMN,GTAD)。从这个角度来看,我们提出了背景约束网络(BCNet),以进一步利用行动和背景的丰富信息。具体地,我们介绍了一种动作 - 背景交互模块,用于可靠的置信度评估,它通过帧和剪辑级别的注意机制模拟了动作和背景之间的不一致。在两个流行的基准测试中进行了广泛的实验,即ActivityNet-1.3和Thumos14。结果表明,我们的方法优于最先进的方法。配备现有的Action Classifier,我们的方法还可以在时间动作本地化任务上实现显着性能。
translated by 谷歌翻译
本文提出了一种用于在视频中的手和对象之间建模时空关系的交互推理网络。所提出的相互作用单元利用变压器模块来推理每个作用手,以及与另一方面的时空关系以及与之相互作用的物体。我们表明,建模双手交互对于在EGENTRIC视频中的动作识别至关重要,并证明通过使用定位编码的轨迹,网络可以更好地识别观察到的相互作用。我们在史诗厨房和别的东西上评估我们的建议,并进行消融研究。
translated by 谷歌翻译
时间动作本地化旨在预测未修剪长视频中每个动作实例的边界和类别。基于锚或建议的大多数先前方法忽略了整个视频序列中的全局本地上下文相互作用。此外,他们的多阶段设计无法直接生成动作边界和类别。为了解决上述问题,本文提出了一种新颖的端到端模型,称为自适应感知变压器(简称apperformer)。具体而言,Adaperformer探索了双支球多头的自我发项机制。一个分支会照顾全球感知的关注,该注意力可以模拟整个视频序列并汇总全球相关环境。而其他分支集中于局部卷积转移,以通过我们的双向移动操作来汇总框架内和框架间信息。端到端性质在没有额外步骤的情况下产生视频动作的边界和类别。提供了广泛的实验以及消融研究,以揭示我们设计的有效性。我们的方法在Thumos14数据集上实现了最先进的准确性(根据map@0.5、42.6 \%map@0.7和62.7 \%map@avg),并在活动网络上获得竞争性能, -1.3数据集,平均地图为36.1 \%。代码和型号可在https://github.com/soupero/adaperformer上找到。
translated by 谷歌翻译
视频理解需要在多种时空分辨率下推理 - 从短的细粒度动作到更长的持续时间。虽然变压器架构最近提出了最先进的,但它们没有明确建模不同的时空分辨率。为此,我们为视频识别(MTV)提供了多视图变压器。我们的模型由单独的编码器组成,表示输入视频的不同视图,以横向连接,以跨视图熔断信息。我们对我们的模型提供了彻底的消融研究,并表明MTV在一系列模型尺寸范围内的准确性和计算成本方面始终如一地表现优于单视对应力。此外,我们在五个标准数据集上实现最先进的结果,并通过大规模预制来进一步提高。我们将释放代码和备用检查点。
translated by 谷歌翻译
我们呈现了基于纯变压器的视频分类模型,在图像分类中最近的近期成功进行了借鉴。我们的模型从输入视频中提取了时空令牌,然后由一系列变压器层编码。为了处理视频中遇到的令牌的长序列,我们提出了我们模型的几种有效的变体,它们将输入的空间和时间维构建。虽然已知基于变换器的模型只有在可用的大型训练数据集时才有效,但我们展示了我们如何在训练期间有效地规范模型,并利用预先训练的图像模型能够在相对小的数据集上训练。我们进行彻底的消融研究,并在包括动力学400和600,史诗厨房,东西的多个视频分类基准上实现最先进的结果,其中 - 基于深度3D卷积网络的现有方法表现出优先的方法。为了促进进一步的研究,我们在https://github.com/google-research/scenic/tree/main/scenic/projects/vivit发布代码
translated by 谷歌翻译
Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content. This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving proposals to cover truth action instances with high recall and high overlap using relatively fewer proposals. To address these difficulties, we introduce an effective proposal generation method, named Boundary-Sensitive Network (BSN), which adopts "local to global" fashion. Locally, BSN first locates temporal boundaries with high probabilities, then directly combines these boundaries as proposals. Globally, with Boundary-Sensitive Proposal feature, BSN retrieves proposals by evaluating the confidence of whether a proposal contains an action within its region. We conduct experiments on two challenging datasets: ActivityNet-1.3 and THUMOS14, where BSN outperforms other state-of-the-art temporal action proposal generation methods with high recall and high temporal precision. Finally, further experiments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art temporal action detection performance.
translated by 谷歌翻译
预先培训用于学习可转让的视频文本表示的模型,以近年来引起了很多关注。以前的主导作品主要采用两个独立的编码器来有效检索,但忽略视频和文本之间的本地关联。另一种研究使用联合编码器与文本交互视频,但是由于每个文本视频对需要馈送到模型中的低效率。在这项工作中,我们能够通过新颖的借口任务进行微粒视频文本交互,以便通过新颖的借口任务进行检索,称为多项选择题(MCQ),其中参数模块BridgeFormer培训以接受由此构建的“问题”。文本功能通过诉诸视频功能。具体来说,我们利用了文本的丰富语义(即,名词和动词)来构建问题,可以培训视频编码器以捕获更多区域内容和时间动态。以问题和答案的形式,可以正确建立本地视频文本功能之间的语义关联。 BridgeFormer能够删除下游检索,只有两个编码器渲染高效且灵活的模型。我们的方法在具有不同实验设置(即零拍摄和微调)的五个数据集中,在五个数据集中优于最先进的方法,包括不同的实验设置(即零拍摄和微调),包括HOWTO100M(一百万个视频)。我们进一步开展零射击动作识别,可以作为视频到文本检索,我们的方法也显着超越了其对应物。作为额外的好处,我们的方法在单模下游任务中实现了竞争力,在单模下游任务上具有更短的预训练视频,例如,使用线性评估的动作识别。
translated by 谷歌翻译
有效的视频动作识别仍然是一个具有挑战性的问题。之后的一个大型模型取代了动力学数据集的最先进的地方,但往往缺乏现实世界的效率评估。在这项工作中,我们填补了这种差距并调查了变压器的使用以实现高效行动识别。我们提出了一种小说,轻量级的动作识别架构视频态度。以一种分解方式,我们用变压器仔细扩展了2D卷积时间段网络,同时在整个模型中保持空间和时间视频结构。现有方法经常诉诸两个极端之一,在那里他们要么将巨大的变压器应用于视频功能,或高度汇集视频功能上的最小变压器。我们的方法通过保持变压器模型小,但利用完整的时空特征结构来不同于它们。我们在时间苛刻的史诗 - 厨房-100和某物-V2(SSV2)数据集上的高效率设置中评估视频致力器,并发现它比现有最先进的效率和准确性更好地实现了更好的效率和准确性模型,除了SSV2上的时间换档模块。
translated by 谷歌翻译
我们提出了块茎:一种简单的时空视频动作检测解决方案。与依赖于离线演员检测器或手工设计的演员位置假设的现有方法不同,我们建议通过同时执行动作定位和识别从单个表示来直接检测视频中的动作微管。块茎学习一组管芯查询,并利用微调模块来模拟视频剪辑的动态时空性质,其有效地加强了与在时空空间中的演员位置假设相比的模型容量。对于包含过渡状态或场景变更的视频,我们提出了一种上下文意识的分类头来利用短期和长期上下文来加强行动分类,以及用于检测精确的时间动作程度的动作开关回归头。块茎直接产生具有可变长度的动作管,甚至对长视频剪辑保持良好的结果。块茎在常用的动作检测数据集AVA,UCF101-24和JHMDB51-21上优于先前的最先进。
translated by 谷歌翻译