由于Covid-19-19疫苗可用,因此没有研究量化不同的灾难疏散策略如何减轻避难所中的大流行风险。因此,我们应用了一个年龄结构化的流行病学模型,称为易感性暴露感染(SEIR)模型,以研究台湾不同的疫苗摄取水平以及在台湾实施的转移方案在多大程度上降低了感染和延迟流行峰值的情况。台湾的转移协议涉及转移因曝光而自我占用的人,从而阻止了他们与集体庇护所的普通公众融合。转移方案,结合足够的疫苗摄取,可以减少相对于没有这种策略的情况,相对于场景,感染的最大数量和延迟爆发。当所有暴露的人的转移是不可能的,或者疫苗的摄取不足时,转移方案仍然很有价值。此外,一组主要由年轻人人口组成的撤离者往往会早日出现大流行峰值,并且在实施转移方案时,多数老年人组的感染比多数老年人多。但是,当不执行转移方案时,多数老年人群体比大多数年轻成人群体高达20%。
translated by 谷歌翻译
台湾对全球碎片流的敏感性和死亡人数最高。台湾现有的碎屑流警告系统,该系统使用降雨量的时间加权度量,当该措施超过预定义的阈值时,会导致警报。但是,该系统会产生许多错误的警报,并错过了实际碎屑流的很大一部分。为了改善该系统,我们实施了五个机器学习模型,以输入历史降雨数据并预测是否会在选定的时间内发生碎屑流。我们发现,随机的森林模型在五个模型中表现最好,并优于台湾现有系统。此外,我们确定了与碎屑流的发生密切相关的降雨轨迹,并探索了缺失碎屑流的风险与频繁的虚假警报之间的权衡。这些结果表明,仅在小时降雨数据中训练的机器学习模型的潜力可以挽救生命,同时减少虚假警报。
translated by 谷歌翻译
在许多临床情况下,迫切需要具有自动呼吸声分析能力的可靠,遥远,连续的实时呼吸声监测仪,例如在监测2019年冠状病毒疾病的疾病进展中,以用手持式听觉仪替换常规的听诊。但是,在实际应用中尚未验证强大的计算机呼吸道声音分析算法。 In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686个Stridor标签和4,740个Rhonchi标签)和15,606个不连续的不定声标签(所有crack带)。我们进行了长期短期记忆(LSTM),门控复发单元(GRU),双向LSTM(BILSTM),双向GRU(BIGRU),卷积神经网络(CNN)-LSTM,CNN-GRU,CNN-BILSTM,CNN-BILSTM,CNN-BILSTM,CNN-BILSTM,CNN-GRU,我们进行了基准测试。和CNN-BIGRU模型用于呼气阶段检测和不定声检测。我们还对基于LSTM的模型,单向模型和双向模型以及带有CNN和CNN的模型之间进行了性能比较。结果表明,这些模型在肺部声音分析中表现出足够的性能。在大多数定义任务中,基于GRU的模型在接收器操作特征曲线下的F1分数和区域上优于基于LSTM的模型。此外,所有双向模型的表现都优于其单向对应物。最后,添加CNN提高了肺部声音分析的准确性,尤其是在CAS检测任务中。
translated by 谷歌翻译
We address the problem of unsupervised domain adaptation when the source domain differs from the target domain because of a shift in the distribution of a latent subgroup. When this subgroup confounds all observed data, neither covariate shift nor label shift assumptions apply. We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target. The identification results are constructive, immediately suggesting an algorithm for estimating the optimal predictor in the target. For continuous observations, when this algorithm becomes impractical, we propose a latent variable model specific to the data generation process at hand. We show how the approach degrades as the size of the shift changes, and verify that it outperforms both covariate and label shift adjustment.
translated by 谷歌翻译
Despite their widespread adoption, neural conversation models have yet to exhibit natural chat capabilities with humans. In this research, we examine user utterances as causes and generated responses as effects, recognizing that changes in a cause should produce a different effect. To further explore this concept, we have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing. This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure. Our analysis reveals that traditional loss functions can struggle to effectively incorporate the DAG structure, leading us to propose a causality-enhanced method called Exponential Maximum Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models. To evaluate the effectiveness of this approach, we have built a comprehensive benchmark using the CausalDialogue dataset leveraging large-scale pre-trained language models, and have assessed the results through both human and automatic evaluation metrics for coherence, diversity, and agility. Our findings show that current techniques are still unable to effectively address conversational DAGs, and that the ExMATE method can improve the diversity and agility of conventional loss functions while maintaining coherence.
translated by 谷歌翻译
Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
translated by 谷歌翻译
Vision transformers (ViTs) have achieved impressive results on various computer vision tasks in the last several years. In this work, we study the capability of frozen ViTs, pretrained only on visual data, to generalize to audio-visual data without finetuning any of its original parameters. To do so, we propose a latent audio-visual hybrid (LAVISH) adapter that adapts pretrained ViTs to audio-visual tasks by injecting a small number of trainable parameters into every layer of a frozen ViT. To efficiently fuse visual and audio cues, our LAVISH adapter uses a small set of latent tokens, which form an attention bottleneck, thus, eliminating the quadratic cost of standard cross-attention. Compared to the existing modality-specific audio-visual methods, our approach achieves competitive or even better performance on various audio-visual tasks while using fewer tunable parameters and without relying on costly audio pretraining or external audio encoders. Our code is available at https://genjib.github.io/project_page/LAVISH/
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译
A household robot should be able to navigate to target locations without requiring users to first annotate everything in their home. Current approaches to this object navigation challenge do not test on real robots and rely on expensive semantically labeled 3D meshes. In this work, our aim is an agent that builds self-supervised models of the world via exploration, the same as a child might. We propose an end-to-end self-supervised embodied agent that leverages exploration to train a semantic segmentation model of 3D objects, and uses those representations to learn an object navigation policy purely from self-labeled 3D meshes. The key insight is that embodied agents can leverage location consistency as a supervision signal - collecting images from different views/angles and applying contrastive learning to fine-tune a semantic segmentation model. In our experiments, we observe that our framework performs better than other self-supervised baselines and competitively with supervised baselines, in both simulation and when deployed in real houses.
translated by 谷歌翻译
Objective: Evictions are involved in a cascade of negative events that can lead to unemployment, homelessness, long-term poverty, and mental health problems. In this study, we developed a natural language processing system to automatically detect eviction incidences and their attributes from electronic health record (EHR) notes. Materials and Methods: We annotated eviction status in 5000 EHR notes from the Veterans Health Administration. We developed a novel model, called Knowledge Injection based on Ripple Effects of Social and Behavioral Determinants of Health (KIRESH), that has shown to substantially outperform other state-of-the-art models such as fine-tuning pre-trained language models like BioBERT and Bio_ClinicalBERT. Moreover, we designed a prompt to further improve the model performance by using the intrinsic connection between the two sub-tasks of eviction presence and period prediction. Finally, we used the Temperature Scaling-based Calibration on our KIRESH-Prompt method to avoid over-confidence issues arising from the imbalance dataset. Results: KIRESH-Prompt achieved a Macro-F1 of 0.6273 (presence) and 0.7115 (period), which was significantly higher than 0.5382 (presence) and 0.67167 (period) for just fine-tuning Bio_ClinicalBERT model. Conclusion and Future Work: KIRESH-Prompt has substantially improved eviction status classification. In future work, we will evaluate the generalizability of the model framework to other applications.
translated by 谷歌翻译