Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
translated by 谷歌翻译
单眼3D对象检测是自动驾驶的重要感知任务。但是,对大型标记数据的高度依赖使其在模型优化过程中昂贵且耗时。为了减少对人类注释的过度依赖,我们提出了混合教学,这是一个有效的半监督学习框架,适用于在训练阶段采用标签和未标记的图像。教学首先通过自我训练生成用于未标记图像的伪标记。然后,通过将实例级图像贴片合并到空背景或标记的图像中,对学生模型进行了更密集和精确的标签的混合图像训练。这是第一个打破图像级限制并将高质量的伪标签从多帧放入一个图像进行半监督训练的图像。此外,由于置信度评分和本地化质量之间的错位,很难仅使用基于置信度的标准将高质量的伪标签与嘈杂的预测区分开。为此,我们进一步引入了一个基于不确定性的过滤器,以帮助选择可靠的伪框来进行上述混合操作。据我们所知,这是单眼3D对象检测的第一个统一SSL框架。在KITTI数据集上的各种标签比下,混合教学始终通过大幅度的边缘改善了单支持者和GUPNET。例如,我们的方法在仅使用10%标记的数据时,在验证集上对GUPNET基线的改进约为 +6.34%ap@0.7。此外,通过利用完整的训练套件和Kitti的另外48K RAW图像,它可以进一步提高单声道 +4.65%的ap@0.7,以提高汽车检测,达到18.54%ap@0.7基于Kitti测试排行榜的方法。代码和预估计的模型将在https://github.com/yanglei18/mix-teaching上发布。
translated by 谷歌翻译
在自主驾驶场景中,基于点云的主导云的3D对象检测器很大程度上依赖于大量准确标记的样品,但是,点云中的3D注释非常乏味,昂贵且耗时。为了减少对大量监督的依赖,已经提出了基于半监督的学习(SSL)方法。伪标记的方法通常用于SSL框架,但是,教师模型的低质量预测严重限制了其性能。在这项工作中,我们通过将教师模型增强到具有几种必要的设计的熟练培训模型,为半监督3D对象检测提出了一个新的伪标记框架。首先,为了改善伪标签的召回,提出了一个时空集合(Ste)模块来生成足够的种子盒。其次,为了提高召回框的精确度,基于群集的盒子投票(CBV)模块旨在从聚类的种子盒中获得汇总投票。这也消除了精致阈值选择伪标签的必要性。此外,为了减少训练期间错误的伪标记样本的负面影响,通过考虑智慧对比度学习(BCL)提出了软监督信号。在一次和Waymo数据集上验证了我们的模型的有效性。例如,一次,我们的方法将基线显着提高了9.51地图。此外,有了一半的注释,我们的模型在Waymo上的完整注释都优于Oracle模型。
translated by 谷歌翻译
在本文中,我们在半监督对象检测(SSOD)中深入研究了两种关键技术,即伪标记和一致性训练。我们观察到,目前,这两种技术忽略了对象检测的一些重要特性,从而阻碍了对未标记数据的有效学习。具体而言,对于伪标记,现有作品仅关注分类得分,但不能保证伪框的本地化精度;为了保持一致性训练,广泛采用的随机训练只考虑了标签级的一致性,但错过了功能级别的训练,这在确保尺度不变性方面也起着重要作用。为了解决嘈杂的伪箱所产生的问题,我们设计了包括预测引导的标签分配(PLA)和正面验证一致性投票(PCV)的嘈杂伪盒学习(NPL)。 PLA依赖于模型预测来分配标签,并使甚至粗糙的伪框都具有鲁棒性。 PCV利用积极建议的回归一致性来反映伪盒的本地化质量。此外,在一致性训练中,我们提出了包括标签和特征水平一致性的机制的多视图尺度不变学习(MSL),其中通过将两个图像之间的移动特征金字塔对准具有相同内容但变化量表的变化来实现特征一致性。在可可基准测试上,我们的方法称为伪标签和一致性训练(PSECO),分别以2.0、1.8、2.0分的1%,5%和10%的标签比优于SOTA(软教师)。它还显着提高了SSOD的学习效率,例如,PSECO将SOTA方法的训练时间减半,但实现了更好的性能。代码可从https://github.com/ligang-cs/pseco获得。
translated by 谷歌翻译
迄今为止,最强大的半监督对象检测器(SS-OD)基于伪盒,该盒子需要一系列带有微调超参数的后处理。在这项工作中,我们建议用稀疏的伪盒子以伪造的伪标签形式取代稀疏的伪盒。与伪盒相比,我们的密集伪标签(DPL)不涉及任何后处理方法,因此保留了更丰富的信息。我们还引入了一种区域选择技术,以突出关键信息,同时抑制密集标签所携带的噪声。我们将利用DPL作为密集老师的拟议的SS-OD算法命名。在可可和VOC上,密集的老师在各种环境下与基于伪盒的方法相比表现出卓越的表现。
translated by 谷歌翻译
半监督对象检测(SSOD)的最新发展显示了利用未标记数据改善对象检测器的希望。但是,到目前为止,这些方法已经假设未标记的数据不包含分布(OOD)类,这对于较大规模的未标记数据集是不现实的。在本文中,我们考虑了一个更实用但具有挑战性的问题,开放式半监督对象检测(OSSOD)。我们首先发现现有的SSOD方法在开放式条件下获得了较低的性能增长,这是由语义扩展引起的,在该语义扩展中,分散注意力的OOD对象​​被错误预测为半监督训练的分布伪标签。为了解决此问题,我们考虑与SSOD方法集成的在线和离线OOD检测模块。通过广泛的研究,我们发现,基于自我监视的视觉变压器的脱机OOD检测器对在线OOD探测器的表现良好,因为它稳健地对伪标记的干扰。在实验中,我们提出的框架有效地解决了语义扩展问题,并在许多OSSOD基准(包括大规模的可可开放图)上显示出一致的改进。我们还在不同的OSSOD条件下验证框架的有效性,包括不同数量的分布类别,不同程度的监督和不同标记集的组合。
translated by 谷歌翻译
随着半监督对象检测(SS-OD)技术的最新开发,可以使用有限的标记数据和丰富的未标记数据来改进对象检测器。但是,仍然有两个挑战未解决:(1)在无锚点检测器上没有先前的SS-OD作品,并且(2)当伪标记的边界框回归时,先前的工作是无效的。在本文中,我们提出了无偏见的教师V2,其中显示了SS-OD方法对无锚定检测器的概括,并引入了无监督回归损失的侦听机制。具体而言,我们首先提出了一项研究,研究了现有的SS-OD方法在无锚固探测器上的有效性,并发现在半监督的设置下它们的性能改善要较低。我们还观察到,在无锚点检测器中使用的中心度和基于本地化的标签的盒子选择不能在半监视的设置下正常工作。另一方面,我们的聆听机制明确地阻止了在边界框回归训练中误导伪标记。我们特别开发了一种基于教师和学生的相对不确定性的新型伪标记的选择机制。这个想法有助于半监督环境中回归分支的有利改善。我们的方法适用于无锚固方法和基于锚的方法,它始终如一地对VOC,可可标准和可可添加的最新方法表现出色。
translated by 谷歌翻译
利用伪标签(例如,类别和边界框)由教师探测器产生的未注释的对象,已经为半监督对象检测(SSOD)的最新进展提供了很多进展。但是,由于稀缺注释引起的教师探测器的概括能力有限,因此产生的伪标签通常偏离地面真理,尤其是那些具有相对较低分类信心的人,从而限制了SSOD的概括性能。为了减轻此问题,我们为SSOD提出了一个双伪标签抛光框架。我们没有直接利用教师探测器生成的伪标签,而是首次尝试使用双抛光学习来减少它们偏离地面真相的偏差,其中两个不同结构化的抛光网络是精心开发和培训的分别在给定注释对象上的类别和边界框的真相。通过这样做,两个抛光网络都可以通过基于最初产生的伪标签充分利用其上下文知识来推断未注释的对象的更准确的伪标签,从而提高了SSOD的概括性能。此外,可以将这种方案无缝地插入现有的SSOD框架中,以进行端到端学习。此外,我们建议将抛光的伪类别和未注释的对象的边界框,用于单独的类别分类和SSOD中的边界框回归,这使得在模型训练过程中可以引入更多未经许可的对象,从而进一步提高了性能。 Pascal VOC和MS Coco基准测试的实验证明了该方法比现有最新基准的优越性。
translated by 谷歌翻译
最近,许多半监督的对象检测(SSOD)方法采用教师学生框架并取得了最新的结果。但是,教师网络与学生网络紧密相结合,因为教师是学生的指数移动平均值(EMA),这会导致表现瓶颈。为了解决耦合问题,我们为SSOD提出了一个周期自我训练(CST)框架,该框架由两个老师T1和T2,两个学生S1和S2组成。基于这些网络,构建了一个周期自我训练机制​​,即S1 $ {\ rightarrow} $ t1 $ {\ rightArow} $ s2 $ {\ rightArrow} $ t2 $ {\ rightArrow} $ s1。对于S $ {\ Rightarrow} $ T,我们还利用学生的EMA权重来更新老师。对于t $ {\ rightarrow} $ s,而不是直接为其学生S1(S2)提供监督,而是老师T1(T2)为学生S2(S1)生成伪标记,从而松散耦合效果。此外,由于EMA的财产,老师最有可能积累学生的偏见,并使错误变得不可逆转。为了减轻问题,我们还提出了分配一致性重新加权策略,在该策略中,根据教师T1和T2的分配一致性,将伪标记重新加权。通过该策略,可以使用嘈杂的伪标签对两个学生S2和S1进行训练,以避免确认偏见。广泛的实验证明了CST的优势,通过将AP比基线优于最先进的方法提高了2.1%的绝对AP改进,并具有稀缺的标记数据,而胜过了2.1%的绝对AP。
translated by 谷歌翻译
Deep learning has attained remarkable success in many 3D visual recognition tasks, including shape classification, object detection, and semantic segmentation. However, many of these results rely on manually collecting densely annotated real-world 3D data, which is highly time-consuming and expensive to obtain, limiting the scalability of 3D recognition tasks. Thus, we study unsupervised 3D recognition and propose a Self-supervised-Self-Labeled 3D Recognition (SL3D) framework. SL3D simultaneously solves two coupled objectives, i.e., clustering and learning feature representation to generate pseudo-labeled data for unsupervised 3D recognition. SL3D is a generic framework and can be applied to solve different 3D recognition tasks, including classification, object detection, and semantic segmentation. Extensive experiments demonstrate its effectiveness. Code is available at https://github.com/fcendra/sl3d.
translated by 谷歌翻译
微创手术中的手术工具检测是计算机辅助干预措施的重要组成部分。当前的方法主要是基于有监督的方法,这些方法需要大量的完全标记的数据来培训监督模型,并且由于阶级不平衡问题而患有伪标签偏见。但是,带有边界框注释的大图像数据集通常几乎无法使用。半监督学习(SSL)最近出现了仅使用适度的注释数据训练大型模型的一种手段。除了降低注释成本。 SSL还显示出希望产生更强大和可推广的模型。因此,在本文中,我们在手术工具检测范式中介绍了半监督学习(SSL)框架,该框架旨在通过知识蒸馏方法来减轻培训数据的稀缺和数据失衡。在拟议的工作中,我们培训了一个标有数据的模型,该模型启动了教师学生的联合学习,在该学习中,学生接受了来自未标记数据的教师生成的伪标签的培训。我们提出了一个多级距离,在检测器的利益区域头部具有基于保证金的分类损失函数,以有效地将前景类别与背景区域隔离。我们在M2CAI16-Tool-locations数据集上的结果表明,我们的方法在不同的监督数据设置(1%,2%,5%,注释数据的10%)上的优越性,其中我们的模型可实现8%,12%和27的总体改善在最先进的SSL方法和完全监督的基线上,MAP中的%(在1%标记的数据上)。该代码可在https://github.com/mansoor-at/semi-supervise-surgical-tool-det上获得
translated by 谷歌翻译
如今,半监督对象检测(SSOD)是一个热门话题,因为虽然收集用于创建新数据集的图像相当容易,但标记它们仍然是一项昂贵且耗时的任务。在半监督学习(SSL)设置上利用原始图像的成功方法之一是卑鄙的教师技术,在其中,老师的伪标记的运作以及从学生到教师的知识转移到教师的情况下进行。但是,通过阈值进行伪标记并不是最好的解决方案,因为置信值与预测不确定性无关,不允许安全过滤预测。在本文中,我们介绍了一个附加的分类任务,以进行边界框定位,以改善预测边界框的过滤并获得更高的学生培训质量。此外,我们从经验上证明,无监督部分上的边界框回归可以同样有助于培训与类别分类一样多。我们的实验表明,我们的IL-NET(改善本地化网)在限量注册方案中可可数据集中的SSOD性能提高了1.14%的AP。该代码可从https://github.com/implabunipr/unbiased-teacher/tree/ilnet获得
translated by 谷歌翻译
Deep learning has emerged as an effective solution for solving the task of object detection in images but at the cost of requiring large labeled datasets. To mitigate this cost, semi-supervised object detection methods, which consist in leveraging abundant unlabeled data, have been proposed and have already shown impressive results. However, most of these methods require linking a pseudo-label to a ground-truth object by thresholding. In previous works, this threshold value is usually determined empirically, which is time consuming, and only done for a single data distribution. When the domain, and thus the data distribution, changes, a new and costly parameter search is necessary. In this work, we introduce our method Adaptive Self-Training for Object Detection (ASTOD), which is a simple yet effective teacher-student method. ASTOD determines without cost a threshold value based directly on the ground value of the score histogram. To improve the quality of the teacher predictions, we also propose a novel pseudo-labeling procedure. We use different views of the unlabeled images during the pseudo-labeling step to reduce the number of missed predictions and thus obtain better candidate labels. Our teacher and our student are trained separately, and our method can be used in an iterative fashion by replacing the teacher by the student. On the MS-COCO dataset, our method consistently performs favorably against state-of-the-art methods that do not require a threshold parameter, and shows competitive results with methods that require a parameter sweep search. Additional experiments with respect to a supervised baseline on the DIOR dataset containing satellite images lead to similar conclusions, and prove that it is possible to adapt the score threshold automatically in self-training, regardless of the data distribution.
translated by 谷歌翻译
半监督的对象检测在平均教师驱动的自我训练的发展中取得了重大进展。尽管结果有令人鼓舞,但在先前的工作中尚未完全探索标签不匹配问题,从而导致自训练期间严重确认偏见。在本文中,我们从两个不同但互补的角度(即分布级别和实例级别)提出了一个简单而有效的标签框架。对于前者,根据Monte Carlo采样,可以合理地近似来自标记数据的未标记数据的类分布。在这种弱监督提示的指导下,我们引入了一个重新分配卑鄙的老师,该老师利用自适应标签 - 分布意识到的信心阈值来生成无偏见的伪标签来推动学生学习。对于后一个,存在着跨教师模型的被忽视的标签分配歧义问题。为了解决这个问题,我们提出了一种新的标签分配机制,用于自我训练框架,即提案自我分配,该机制将学生的建议注入教师,并生成准确的伪标签,以相应地匹配学生模型中的每个建议。 MS-Coco和Pascal-VOC数据集的实验证明了我们提出的框架与其他最先进的框架相当优越。代码将在https://github.com/hikvision-research/ssod上找到。
translated by 谷歌翻译
点云实例分割在深度学习的出现方面取得了巨大进展。然而,这些方法通常是具有昂贵且耗时的密度云注释的数据饥饿。为了减轻注释成本,在任务中仍申请未标记或弱标记的数据。在本文中,我们使用标记和未标记的边界框作为监控,介绍第一个半监控点云实例分段框架(SPIB)。具体而言,我们的SPIB架构涉及两级学习程序。对于阶段,在具有扰动一致性正则化(SPCR)的半监控设置下培训边界框提案生成网络。正规化通过强制执行对应用于输入点云的不同扰动的边界框预测的不变性,为网络学习提供自我监督。对于阶段,使用SPCR的边界框提案被分组为某些子集,并且使用新颖的语义传播模块和属性一致性图模块中的每个子集中挖掘实例掩码。此外,我们介绍了一种新型占用比导改进模块,以优化实例掩码。对挑战队的攻击v2数据集进行了广泛的实验,证明了我们的方法可以实现与最近的完全监督方法相比的竞争性能。
translated by 谷歌翻译
平均老师(MT)方案在半监督对象检测(SSOD)中被广泛采用。在MT中,通过手工制作的标签分配,采用了由教师的最终预测(例如,在无最大抑制(NMS)后处理之后)提供的稀疏伪标签(例如,在无最大抑制(NMS)后处理)。但是,稀疏到密集的范式使SSOD的管道复杂化,同时忽略了强大的直接,密集的教师监督。在本文中,我们试图直接利用教师的密集指导来监督学生培训,即密集至密集的范式。具体而言,我们建议逆NMS聚类(INC)和等级匹配(RM),以实例化密集的监督,而无需广泛使用的常规稀疏伪标签。 Inc带领学生像老师一样将候选箱子分组为NMS中的群集,这是通过学习在NMS过程中揭示的分组信息来实现的。在通过Inc获得了与教师相同的分组计划后,学生通过排名匹配进一步模仿了教师与聚类候选人的排名分配。借助拟议的Inc和RM,我们将密集的教师指导集成到半监督的对象检测(称为DTG-SSOD)中,成功地放弃了稀疏的伪标签,并在未标记的数据上提供了更有信息的学习。在可可基准上,我们的DTG-SSOD在各种标签率下实现了最先进的性能。例如,在10%的标签率下,DTG-SSOD将监督的基线从26.9提高到35.9地图,使以前的最佳方法软教师的表现优于1.9分。
translated by 谷歌翻译
Semi-supervised object detection (SSOD) aims to boost detection performance by leveraging extra unlabeled data. The teacher-student framework has been shown to be promising for SSOD, in which a teacher network generates pseudo-labels for unlabeled data to assist the training of a student network. Since the pseudo-labels are noisy, filtering the pseudo-labels is crucial to exploit the potential of such framework. Unlike existing suboptimal methods, we propose a two-step pseudo-label filtering for the classification and regression heads in a teacher-student framework. For the classification head, OCL (Object-wise Contrastive Learning) regularizes the object representation learning that utilizes unlabeled data to improve pseudo-label filtering by enhancing the discriminativeness of the classification score. This is designed to pull together objects in the same class and push away objects from different classes. For the regression head, we further propose RUPL (Regression-Uncertainty-guided Pseudo-Labeling) to learn the aleatoric uncertainty of object localization for label filtering. By jointly filtering the pseudo-labels for the classification and regression heads, the student network receives better guidance from the teacher network for object detection task. Experimental results on Pascal VOC and MS-COCO datasets demonstrate the superiority of our proposed method with competitive performance compared to existing methods.
translated by 谷歌翻译
培训深层神经网络以识别图像识别通常需要大规模的人类注释数据。为了减少深神经溶液对标记数据的依赖,文献中已经提出了最先进的半监督方法。尽管如此,在面部表达识别领域(FER)领域,使用这种半监督方法非常罕见。在本文中,我们介绍了一项关于最近提出的在FER背景下的最先进的半监督学习方法的全面研究。我们对八种半监督学习方法进行了比较研究当使用各种标记的样品时。我们还将这些方法的性能与完全监督的培训进行了比较。我们的研究表明,当培训现有的半监督方法时,每类标记的样本只有250个标记的样品可以产生可比的性能,而在完整标记的数据集中训练的完全监督的方法。为了促进该领域的进一步研究,我们在:https://github.com/shuvenduroy/ssl_fer上公开提供代码
translated by 谷歌翻译
半监督对象检测(SSOD)的最新进展主要由基于一致性的伪标记方法驱动,用于图像分类任务,产生伪标签作为监控信号。然而,在使用伪标签时,缺乏考虑本地化精度和放大的类别不平衡,这两者都对于检测任务至关重要。在本文中,我们介绍了针对物体检测量身定制的确定性感知伪标签,可以有效地估计导出的伪标签的分类和定位质量。这是通过将传统定位转换为分类任务之后的传统定位来实现的。在分类和本地化质量分数上调节,我们动态调整用于为每个类别生成伪标签和重重损耗函数的阈值,以减轻类别不平衡问题。广泛的实验表明,我们的方法在Coco和Pascal VOC上的1-2%AP改善了最先进的SSOD性能,同时与大多数现有方法正交和互补。在有限的注释制度中,我们的方法可以通过从Coco标记的1-10%标记数据来改善监督基准。
translated by 谷歌翻译
基于深度学习的方法在3D对象检测任务中显示出显着性能。然而,当在逐步学习新类时,它们遭受了最初训练的课程的灾难性表现下降,而无需重新审视旧数据。这种“灾难性忘记”现象阻碍了现实世界场景中的3D对象检测方法的部署,其中需要连续学习系统。在本文中,我们研究了未开发的但重要的类增量3D对象检测问题,并提出了第一种解决方案 - SDCOT,一种新型静态动态共同教学方法。我们的SDCOT通过静态教师减轻了灾难性的旧课程,这为新样本中的旧课程提供了伪注释,并通过用蒸馏损失提取先前的知识来规范电流模型。与此同时,SDCOT一致地通过动态教师从新数据中了解基础知识。我们对两个基准数据集进行了广泛的实验,并在几个增量学习场景中展示了我们SDCOT对基线方法的卓越性能。
translated by 谷歌翻译