近年来,自我监督的学习在涉及计算机视觉和自然语言处理的应用中取得了重大成功。借口任务的类型对性能提升至关重要。一个常见的借口任务是图像对图像之间的相似性和异化的量度。在这种情况下,构成负对的两个图像与人类明显不同。然而,在昆虫学中,物种几乎无法区分,因此难以区分。在这项研究中,我们探讨了暹罗神经网络的表现,通过学习使用对比损失来推动大黄蜂物种对的嵌入,这是不同的,并将相似的嵌入物汇集在一起。我们的实验结果显示了零射击实例的61%F1分数,表现出对与培训集交叉口的类别的提高11%的性能。
translated by 谷歌翻译
AI正在经历范式转变,随着模型的兴起(例如Bert,Dall-E,GPT-3),这些模型经过大规模的数据训练,并且可以适应广泛的下游任务。我们称这些模型基础模型来强调其至关重要但不完整的特征。该报告提供了基础模型的机会和风险的详尽说明,包括其功能(例如语言,愿景,机器人技术,推理,人类互动)和技术原则(例如,模型架构,培训程序,数据,系统,安全,安全性,评估,理论)对其应用(例如法律,医疗保健,教育)和社会影响(例如不平等,滥用,经济和环境影响,法律和道德考虑)。尽管基础模型基于标准的深度学习和转移学习,但它们的规模导致了新的新兴能力,以及它们在许多任务中的有效性都激发了同质化。同质化提供了强大的杠杆作用,但要求谨慎,因为基础模型的缺陷均由下游的所有适应模型继承。尽管即将广泛地部署基础模型,但我们目前对它们的工作方式,失败以及由于其新兴属性的影响而缺乏清晰的了解。为了解决这些问题,我们认为基础模型的许多批判性研究都需要与他们的基本社会技术性质相称。
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Accurate and smooth global navigation satellite system (GNSS) positioning for pedestrians in urban canyons is still a challenge due to the multipath effects and the non-light-of-sight (NLOS) receptions caused by the reflections from surrounding buildings. The recently developed factor graph optimization (FGO) based GNSS positioning method opened a new window for improving urban GNSS positioning by effectively exploiting the measurement redundancy from the historical information to resist the outlier measurements. Unfortunately, the FGO-based GNSS standalone positioning is still challenged in highly urbanized areas. As an extension of the previous FGO-based GNSS positioning method, this paper exploits the potential of the pedestrian dead reckoning (PDR) model in FGO to improve the GNSS standalone positioning performance in urban canyons. Specifically, the relative motion of the pedestrian is estimated based on the raw acceleration measurements from the onboard smartphone inertial measurement unit (IMU) via the PDR algorithm. Then the raw GNSS pseudorange, Doppler measurements, and relative motion from PDR are integrated using the FGO. Given the context of pedestrian navigation with a small acceleration most of the time, a novel soft motion model is proposed to smooth the states involved in the factor graph model. The effectiveness of the proposed method is verified step-by-step through two datasets collected in dense urban canyons of Hong Kong using smartphone-level GNSS receivers. The comparison between the conventional extended Kalman filter, several existing methods, and FGO-based integration is presented. The results reveal that the existing FGO-based GNSS standalone positioning is highly complementary to the PDR's relative motion estimation. Both improved positioning accuracy and trajectory smoothness are obtained with the help of the proposed method.
translated by 谷歌翻译
Aligning users across networks using graph representation learning has been found effective where the alignment is accomplished in a low-dimensional embedding space. Yet, achieving highly precise alignment is still challenging, especially when nodes with long-range connectivity to the labeled anchors are encountered. To alleviate this limitation, we purposefully designed WL-Align which adopts a regularized representation learning framework to learn distinctive node representations. It extends the Weisfeiler-Lehman Isormorphism Test and learns the alignment in alternating phases of "across-network Weisfeiler-Lehman relabeling" and "proximity-preserving representation learning". The across-network Weisfeiler-Lehman relabeling is achieved through iterating the anchor-based label propagation and a similarity-based hashing to exploit the known anchors' connectivity to different nodes in an efficient and robust manner. The representation learning module preserves the second-order proximity within individual networks and is regularized by the across-network Weisfeiler-Lehman hash labels. Extensive experiments on real-world and synthetic datasets have demonstrated that our proposed WL-Align outperforms the state-of-the-art methods, achieving significant performance improvements in the "exact matching" scenario. Data and code of WL-Align are available at https://github.com/ChenPengGang/WLAlignCode.
translated by 谷歌翻译
The demand of high-resolution video contents has grown over the years. However, the delivery of high-resolution video is constrained by either computational resources required for rendering or network bandwidth for remote transmission. To remedy this limitation, we leverage the eye trackers found alongside existing augmented and virtual reality headsets. We propose the application of video super-resolution (VSR) technique to fuse low-resolution context with regional high-resolution context for resource-constrained consumption of high-resolution content without perceivable drop in quality. Eye trackers provide us the gaze direction of a user, aiding us in the extraction of the regional high-resolution context. As only pixels that falls within the gaze region can be resolved by the human eye, a large amount of the delivered content is redundant as we can't perceive the difference in quality of the region beyond the observed region. To generate a visually pleasing frame from the fusion of high-resolution region and low-resolution region, we study the capability of a deep neural network of transferring the context of the observed region to other regions (low-resolution) of the current and future frames. We label this task a Foveated Video Super-Resolution (FVSR), as we need to super-resolve the low-resolution regions of current and future frames through the fusion of pixels from the gaze region. We propose Cross-Resolution Flow Propagation (CRFP) for FVSR. We train and evaluate CRFP on REDS dataset on the task of 8x FVSR, i.e. a combination of 8x VSR and the fusion of foveated region. Departing from the conventional evaluation of per frame quality using SSIM or PSNR, we propose the evaluation of past foveated region, measuring the capability of a model to leverage the noise present in eye trackers during FVSR. Code is made available at https://github.com/eugenelet/CRFP.
translated by 谷歌翻译
We investigate how humans perform the task of dubbing video content from one language into another, leveraging a novel corpus of 319.57 hours of video from 54 professionally produced titles. This is the first such large-scale study we are aware of. The results challenge a number of assumptions commonly made in both qualitative literature on human dubbing and machine-learning literature on automatic dubbing, arguing for the importance of vocal naturalness and translation quality over commonly emphasized isometric (character length) and lip-sync constraints, and for a more qualified view of the importance of isochronic (timing) constraints. We also find substantial influence of the source-side audio on human dubs through channels other than the words of the translation, pointing to the need for research on ways to preserve speech characteristics, as well as semantic transfer such as emphasis/emotion, in automatic dubbing systems.
translated by 谷歌翻译
This work presents a detailed linguistic analysis into why larger Transformer-based pre-trained language models with more parameters and lower perplexity nonetheless yield surprisal estimates that are less predictive of human reading times. First, regression analyses show a strictly monotonic, positive log-linear relationship between perplexity and fit to reading times for the more recently released five GPT-Neo variants and eight OPT variants on two separate datasets, replicating earlier results limited to just GPT-2 (Oh et al., 2022). Subsequently, analysis of residual errors reveals a systematic deviation of the larger variants, such as underpredicting reading times of named entities and making compensatory overpredictions for reading times of function words such as modals and conjunctions. These results suggest that the propensity of larger Transformer-based models to 'memorize' sequences during training makes their surprisal estimates diverge from humanlike expectations, which warrants caution in using pre-trained language models to study human language processing.
translated by 谷歌翻译