隐式神经表示显示了3D场景重建的有希望的潜力。最近的工作将其应用于自主3D重建,通过学习信息获得图路径计划的信息增益。有效,信息增益的计算很昂贵,并且与使用体积表示相比,使用隐式表示为3D点进行碰撞检查要慢得多。在本文中,我们建议1)利用神经网络作为信息增益场的隐式函数近似器,以及2)将隐式细粒表示与粗量表示形式结合起来,以提高效率。随着效率的提高,我们提出了基于基于图的计划者的新型信息路径计划。我们的方法表明,与具有隐性和明确表示的自主重建相比,重建质量和计划效率的显着提高。我们将该方法部署在真正的无人机上,结果表明我们的方法可以计划信息意见并以高质量重建场景。
translated by 谷歌翻译
多元时间序列异常检测已在半监督的设置下进行了广泛的研究,其中需要所有具有正常实例的训练数据集。但是,准备这样的数据集非常费力,因为每个数据实例应完全保证是正常的。因此,希望在没有任何标签知识的情况下基于数据集探索基于数据集的多元时间序列异常检测方法。在本文中,我们提出了MTGFLOF,这是通过动态图和实体意识到的归一化流量进行多变量时间序列异常检测的无监督异常检测方法,仅依靠广泛接受的假设,即异常实例比正常情况表现出稀疏的密度。但是,实体之间的复杂相互依赖性和每个实体的不同固有特征对密度估计提出了重大挑战,更不用说基于估计的可能性分布来检测异常。为了解决这些问题,我们建议通过图结构学习模型来学习实体之间的相互关系,这有助于建模多元时间序列的准确分布。此外,考虑到各个实体的独特特征,开发了实体意识到的归一化流,以将每个实体描述为参数化的正态分布,从而产生细粒密度估计。结合了这两种策略,MTGFlowChieves出色的异常检测性能。进行了现实世界数据集的实验,表明MTGFLOW的表现分别超过了最先进的(SOTA),分别对SWAT和WADI数据集的实验分别高出5.0%和1.6%的AUROC。同样,通过单个实体贡献的异常得分,MTGFLOF可以为检测结果提供解释信息。
translated by 谷歌翻译
隐式神经表示表现出了令人信服的结果3D重建,并且最近也证明了在线大满贯系统的潜力。但是,将它们应用于自主3D重建,在此尚未研究机器人探索场景并计划重建的视图路径的情况下。在本文中,我们首次通过解决两个关键挑战来首次探索自动3D场景重建的可能性:1)寻求标准以根据新表示形式衡量候选人观点的质量,以及2)从可以推广到不同场景的数据而不是手工制作的数据中学习标准。对于第一个挑战,提出了峰值信噪比(PSNR)的代理来量化观点质量。代理是通过将场景中空间点的颜色视为在高斯分布下而不是确定性分布下的随机变量来获得的;分布的方差量化了重建的不确定性并组成代理。在第二个挑战中,代理与场景隐式神经网络的参数共同优化。通过提出的视图质量标准,我们可以将新表示形式应用于自动3D重建。我们的方法证明了与使用TSDF或重建的变体相比,在没有视图计划的情况下,与使用TSDF或重建的变体相比,对各种指标的各种指标进行了重大改进。
translated by 谷歌翻译
神经体系结构搜索(NAS)是自动化有效图像处理DNN设计的强大工具。该排名已被倡导为NAS设计有效的性能预测指标。先前的对比方法通过比较架构对并预测其相对性能来解决排名问题。但是,它仅关注两个相关建筑之间的排名,而忽略了搜索空间的整体质量分布,这可能会遇到概括性问题。提出了一个预测因子,即专注于特定体系结构的全球质量层的神经体系结构排名,以解决由当地观点引起的此类问题。 NAR在全球范围内探索搜索空间的质量层,并根据其全球排名将每个人分类为他们所属的层。因此,预测变量获得了搜索空间的性能分布的知识,这有助于更轻松地将其排名能力推广到数据集。同时,全球质量分布通过根据质量层的统计数据直接对候选者进行采样,从而促进了搜索阶段,而质量层的统计数据没有培训搜索算法,例如增强型学习(RL)或进化算法(EA),因此简化了NAS管道并保存计算开销。拟议的NAR比在两个广泛使用的NAS研究数据集上的最先进方法取得了更好的性能。在NAS-Bench-101的庞大搜索空间中,NAR可以轻松地找到具有最高0.01 $ \ unicode {x2030} $ performance的架构。它还可以很好地概括为NAS Bench-201的不同图像数据集,即CIFAR-10,CIFAR-100和Imagenet-16-120,通过识别每个它们的最佳体系结构。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.
translated by 谷歌翻译
Capturing feature information effectively is of great importance in vision tasks. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains on diverse deep learning vision tasks. However, the existing methods do not organically combined advantages of these valid ideas. In this paper, we propose a novel CNN architecture called GoogLe2Net, it consists of residual feature-reutilization inceptions (ResFRI) or split residual feature-reutilization inceptions (Split-ResFRI) which create transverse passages between adjacent groups of convolutional layers to enable features flow to latter processing branches and possess residual connections to better process information. Our GoogLe2Net is able to reutilize information captured by foregoing groups of convolutional layers and express multi-scale features at a fine-grained level, which improves performances in image classification. And the inception we proposed could be embedded into inception-like networks directly without any migration costs. Moreover, in experiments based on popular vision datasets, such as CIFAR10 (97.94%), CIFAR100 (85.91%) and Tiny Imagenet (70.54%), we obtain better results on image classification task compared with other modern models.
translated by 谷歌翻译
Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译