量化人体取向的安全性是人类机器人相互作用的重要问题。了解人类运动的身体限制不断变化,可以改善对安全人类运动的检查,并通过实时风险评估带来有关人体定向的稳定性和正常性的基本信息。此外,这些信息可以用于合作机器人和监视系统中,以更自由地评估和互动。此外,工作空间区域可以更确定性地具有安全性的身体特征。基于这种动机,我们提出了一种新型的预测安全模型(PSM),该模型依赖于人类胸部的惯性测量单元的信息。 PSM涵盖了一个3型弹簧型摆锤模型,该模型基于安全运动数据集预测人类运动。通过将安全数据集和弹性弹簧抑制模型集成的方式,该方法可以在建议的方法可以在不同的安全水平下实现复杂的运动来获得人类的估计安全取向。我们在现实情况下进行了实验,以验证我们的新型模型。这种新颖的方法可以在不同的指导/辅助机器人和健康监测系统中使用,以支持和评估人类状况,尤其是长者。
translated by 谷歌翻译
新兴的高级控制应用程序,软件的复杂性增加,但计算资源有限,这表明实时控制器应具有适应性的设计。这些控制策略还应考虑系统的运行时行为。这样的研究尝试之一是与任务调度程序一起设计控制器(称为控制式共同设计),以进行更可预测的时序行为以及幸存的系统过载。与具有相等距离采样周期的传统控制器设计不同,共同设计方法通过明确考虑定时属性,例如使用基于事件的控制器或多个采样时间(非均匀的采样和控制),从而提高了系统的灵活性和弹性)。在这种情况下,我们介绍了基于能量控制器的离散化的第一项工作,该工作可以在多个周期之间任意切换并相应地调整控制参数而不会破坏系统的稳定。引入了基于此范围的DC电机的数字控制器设计,以弹性负载为例,并根据提议的Lyapunov函数给出稳定性条件。该方法通过各种基于计算机的模拟进行评估,以证明其有效性。
translated by 谷歌翻译
当球体在平面上遵循直线路径时,本文涉及旋转轧制球体的运动规划。由于球体的运动受到直线的约束,因此球体的旋转运动的控制对于收敛到球体的期望配置是必不可少的。在本文中,我们展示了一种基于新的基于几何的规划方法,其基于该非线性系统的全状态描述。首先,提出了运动规划的问题陈述。接下来,我们通过使用Darboux帧运动学开发作为虚拟表面实现的几何控制器。该虚拟表面产生基于弧长的输入,用于控制球体的轨迹。然后,迭代算法旨在调整所需配置的这些输入。模拟验证了所提出的方法的可行性。
translated by 谷歌翻译
在本文中,我们提出了一个样本复杂性,以从嘈杂的样本中学习单纯形。给出了$ n $的数据集,其中包括i.i.d.样品从$ \ mathbb {r}^k $中的未知任意单纯形上的均匀分布中得出,其中假定样品被任意幅度的加性高斯噪声损坏。我们提出了一种策略,该策略可以输出一个单纯概率,总变化距离为$ \ epsilon + o \ left(\ mathrm {snr}^{ - 1} \ right)$从true Simplex中,对于任何$ \ Epsilon> 0 $。我们证明,要接近True Simplex,就足以拥有$ n \ ge \ tilde {o} \ left(k^2/\ epsilon^2 \ right)$ samples。在这里,SNR代表信噪比,可以看作是单纯形直径与噪声的标准偏差的比率。我们的证明是基于样品压缩技术的最新进步,这些进步已经显示出在高维高斯混合模型中的密度估计的紧密范围方面的承诺。
translated by 谷歌翻译
本文旨在提出和理论上分析一种新的分布式方案,用于稀疏线性回归和特征选择。主要目标是根据来自未知稀疏线性模型的嘈杂观测来了解高维数据集的几个因果特征。但是,在$ \ mathbb {r} ^ p $中包含$ n $ data样本的假定培训集已经在大型网络上分发,以通过极低的带宽链路连接的$ n $客户端。此外,我们考虑渐近配置$ 1 \ ll n \ ll n \ ll p $。为了从整个数据集推断出原因尺寸,我们提出了一种简单但有效的网络中的信息共享方法。在这方面,我们理论上表明,可以可靠地恢复真正的因果特征,其中o的$ o o \ lex(n \ log p \ light)$跨越网络。与将所有样本传输到单个节点(集中式场景)的微小情况相比,这产生了显着降低的通信成本,该沟通成本是需要$ o \ lef(np \右)$传输。诸如ADMM的更复杂的方案仍然具有$ o ox的通信复杂性(NP \右)$。令人惊讶的是,我们的样本复杂性被证明是与每个节点中固定性能测量的最佳集中方法的相同(最多常数因素),而NA \“{i} ve分散技术的最佳集中方法以$线性地增长N $。本文的理论担保是基于Javanmard等人的最近脱叠套索的分析框架。(2019),并由几个在合成和现实世界数据集上进行的几台计算机实验支持。
translated by 谷歌翻译
自我监督的学习表现出了巨大的希望,因为它可以在没有完全采样的数据的情况下训练深度学习MRI重建方法。当前用于物理学指导的重建网络的自我监督的学习方法分裂获得了两个不相交的数据,其中一种用于独立网络中的数据一致性(DC),另一个用于定义培训损失。在这项研究中,我们提出了一种改进的自我监督学习策略,该策略更有效地使用获得的数据来训练物理学指导的重建网络,而无需数据完全采样的数据。提出的通过数据下采样(SSDU)对所提出的多掩码自我监督的学习(SSDU)应用于获得的测量结果,将其分为每个训练样本的多对不相交集,而使用这些对DC单位和DC单位和其中一对,其他用于定义损失的,从而更有效地使用了不足采样的数据。多面罩SSDU应用于完全采样的3D膝盖上,并前瞻性地采样3D脑MRI数据集,用于各种加速度和图案,并与CG-Sense和单膜ssdu dl-MRI以及受监督的DL-MRI以及当时的DL-MRI进行比较。提供了完全采样的数据。膝盖MRI的结果表明,提出的多面罩SSDU胜过SSDU,并与受监督的DL-MRI紧密相关。一项临床读者的研究进一步将多面罩SSDU在SNR和混叠伪影方面高于监督的DL-MRI。大脑MRI的结果表明,与SSDU相比,多面罩SSDU可以达到更好的重建质量。读者的研究表明,与单罩SSDU相比,r = 8时的多面膜SSDU显着改善了重建,r = 8,以及r = 2时的CG-Sense。
translated by 谷歌翻译
深度神经网络(DNN)已经在许多领域实现了最先进的性能。然而,DNN需要高计算时间,并且人们始终期望在较低的计算中进行更好的性能。因此,我们研究人类躯体传感系统并设计神经网络(SPINANNET),以实现更高的计算准确性,计算较少。传统NNS中的隐藏层接收前一层中的输入,应用激活函数,然后将结果传送到下一个图层。在拟议的脊柱植物中,每层分为三个分裂:1)输入分割,2)中间分割,3)输出分割。每个层的输入拆分接收到输入的一部分。每个层的中间分割接收先前层的中间分离的输出和电流层的输入分割的输出。输入权重的数量明显低于传统的DNN。 SPINANNET还可以用作DNN的完全连接或分类层,并支持传统的学习和转移学习。我们在大多数DNN中观察到具有较低计算成本的显着误差。 VGG-5网络上的传统学习具有SPINALNET分类层,为QMNIST,Kuzushiji-Mnist,EMNIST(字母,数字和平衡)数据集提供了最先进的(SOTA)性能。传统学习与Imagenet预训练的初始重量和Spinalnet分类层提供了STL-10,水果360,Bird225和CALTECH-101数据集的SOTA性能。拟议的SPINANNET的脚本可按以下链接提供:https://github.com/dipuk0506/spinalnet
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
With the advent of Neural Style Transfer (NST), stylizing an image has become quite popular. A convenient way for extending stylization techniques to videos is by applying them on a per-frame basis. However, such per-frame application usually lacks temporal-consistency expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal-consistency suffers from one or more of the following drawbacks. They (1) are only suitable for a limited range of stylization techniques, (2) can only be applied in an offline fashion requiring the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency-control. Note that existing consistent video-filtering approaches aim to completely remove flickering artifacts and thus do not respect any specific consistency-control aspect. For stylization tasks, however, consistency-control is an essential requirement where a certain amount of flickering can add to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that can stylize video streams while providing interactive consistency-control. Apart from stylization, our approach also supports various other image processing filters. For achieving interactive performance, we develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. We show that the final consistent video-output using our flow network is comparable to that being obtained using state-of-the-art optical-flow network. Further, we employ an adaptive combination of local and global consistent features and enable interactive selection between the two. By objective and subjective evaluation, we show that our method is superior to state-of-the-art approaches.
translated by 谷歌翻译
Machine learning is the dominant approach to artificial intelligence, through which computers learn from data and experience. In the framework of supervised learning, for a computer to learn from data accurately and efficiently, some auxiliary information about the data distribution and target function should be provided to it through the learning model. This notion of auxiliary information relates to the concept of regularization in statistical learning theory. A common feature among real-world datasets is that data domains are multiscale and target functions are well-behaved and smooth. In this paper, we propose a learning model that exploits this multiscale data structure and discuss its statistical and computational benefits. The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings and has interpretable levels. The model apportions computational resources according to the complexity of data instances and target functions. This property can have multiple benefits, including higher inference speed and computational savings in training a model for many users or when training is interrupted. We provide a statistical analysis of the learning mechanism using multiscale entropies and show that it can yield significantly stronger guarantees than uniform convergence bounds.
translated by 谷歌翻译