Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
正则化方法已被广泛应用于没有已知模型结构的系统识别问题。本文提出了基于原子规范正则化的无限差稀疏学习算法。原子规范正则化将传递函数分解为一阶原子模型,并解决了一个组套索问题,该问题选择了一组稀疏的极点并识别相应的系数。解决问题的困难在于,存在无限数量的原子模型。这项工作提出了一种贪婪的算法,该算法生成了新的候选原子模型,从而最大程度地违反了现有问题的最佳条件。该算法能够以高精度来解决无限二维组的套索问题。该算法进一步扩展以减少偏差,并分别通过迭代的自适应组套索和互补对稳定性选择在极点位置估计中拒绝误报。数值结果表明,就脉冲响应拟合和极点位置估计而言,所提出的算法的性能优于基准参数化和正则方法。
translated by 谷歌翻译
We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing "curve" skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.
translated by 谷歌翻译
The findable, accessible, interoperable, and reusable (FAIR) data principles have provided a framework for examining, evaluating, and improving how we share data with the aim of facilitating scientific discovery. Efforts have been made to generalize these principles to research software and other digital products. Artificial intelligence (AI) models -- algorithms that have been trained on data rather than explicitly programmed -- are an important target for this because of the ever-increasing pace with which AI is transforming scientific and engineering domains. In this paper, we propose a practical definition of FAIR principles for AI models and create a FAIR AI project template that promotes adherence to these principles. We demonstrate how to implement these principles using a concrete example from experimental high energy physics: a graph neural network for identifying Higgs bosons decaying to bottom quarks. We study the robustness of these FAIR AI models and their portability across hardware architectures and software frameworks, and report new insights on the interpretability of AI predictions by studying the interplay between FAIR datasets and AI models. Enabled by publishing FAIR AI models, these studies pave the way toward reliable and automated AI-driven scientific discovery.
translated by 谷歌翻译
The attention mechanism is considered the backbone of the widely-used Transformer architecture. It contextualizes the input by computing input-specific attention matrices. We find that this mechanism, while powerful and elegant, is not as important as typically thought for pretrained language models. We introduce PAPA, a new probing method that replaces the input-dependent attention matrices with constant ones -- the average attention weights over multiple inputs. We use PAPA to analyze several established pretrained Transformers on six downstream tasks. We find that without any input-dependent attention, all models achieve competitive performance -- an average relative drop of only 8% from the probing baseline. Further, little or no performance drop is observed when replacing half of the input-dependent attention matrices with constant (input-independent) ones. Interestingly, we show that better-performing models lose more from applying our method than weaker models, suggesting that the utilization of the input-dependent attention mechanism might be a factor in their success. Our results motivate research on simpler alternatives to input-dependent attention, as well as on methods for better utilization of this mechanism in the Transformer architecture.
translated by 谷歌翻译
Recent developments in the methods of explainable AI (XAI) methods allow researchers to explore the inner workings of deep neural networks (DNNs), revealing crucial information about input-output relationships and realizing how data connects with machine learning models. In this paper we explore interpretability of DNN models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC). We review a subset of existing top tagger models and explore different quantitative methods to identify which features play the most important roles in identifying the top jets. We also investigate how and why feature importance varies across different XAI metrics, how feature correlations impact their explainability, and how latent space representations encode information as well as correlate with physically meaningful quantities. Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models. We additionally illustrate the activity of hidden layers as Neural Activation Pattern (NAP) diagrams and demonstrate how they can be used to understand how DNNs relay information across the layers and how this understanding can help to make such models significantly simpler by allowing effective model reoptimization and hyperparameter tuning. By incorporating observations from the interpretability studies, we obtain state-of-the-art top tagging performance from augmented implementation of existing network
translated by 谷歌翻译
赤道等离子体气泡(EPB)是低密度血浆的羽毛,它们从F层的底部升至Exosphere。 EPB是无线电波闪烁的已知原因,可以降低与航天器的通信。我们构建了一个随机的森林回归剂,以预测和预测IBI处理器在船上检测到的EPB [0-1]的可能性。我们使用从2014年到2021年的8年群数据,并将数据从时间序列转换为5维空间,该空间包括纬度,经度,MLT,年份和年度。我们还增加了KP,F10.7厘米和太阳风速。关于地理位置,当地时间,季节和太阳活动的EPB的观察主要与现有工作一致,而链接的地磁活动尚不清楚。该预测的精度为88%,并且在EPB特异性时空尺度上的性能很好。这证明了XGBoost方法能够成功捕获群EPB的气候和每日变异性。由于电离层内的局部和随机特征,捕获每日方差长期以来一直逃避研究人员。我们利用Shapley值来解释该模型并深入了解EPB的物理学。我们发现,随着太阳能速度的增加,EPB的概率降低。我们还确定了EPB概率周围的尖峰。这两个见解直接源自XGBoost和Shapley技术。
translated by 谷歌翻译
冷冻电子显微镜(Cryo-EM)已成为确定蛋白质结构,尤其是近年来大型蛋白质复合物和组件的结构的关键技术。Cryo-EM数据分析中的一个关键挑战是从冷冻EM密度图中自动重建精确的蛋白质结构。在这篇综述中,我们简要概述了从冷冻EM密度图构建蛋白质结构的各种深度学习方法,分析其影响,并讨论准备高质量数据集以培训深度学习模型的挑战。展望未来,需要开发更先进的深度学习模型,以有效地将冷冻EM数据与其他互补数据(例如蛋白质序列和Alphafold预测的结构)相结合,以进一步推进该领域。
translated by 谷歌翻译
我们介绍了一种考虑复杂的环境条件,在极地地区介绍了一种在极地地区长距离海上路线计划的方法。该方法允许构建优化的路线,描述了该过程的三个主要阶段:使用不均匀网格对环境条件进行离散建模,网格最佳路径的构建以及路径平滑。为了说明不同的车辆性能,我们构建了一系列数据驱动的功能,这些功能可以应用于环境网格,以确定给定容器和网格单元的速度限制和燃料要求,以图形和地理空间表示这些数量。在描述我们的结果时,我们展示了一个示例用途,用于Polar Research船RRS David Attenborough爵士(SDA)的路线规划,核算冰的性能特征,并验证韦德尔海地区的时空路线构建,南极洲。我们通过证明路线的变化取决于季节性海冰可变性,所使用的路线规划目标函数的差异以及其他环境条件(如电流)的存在来证明这种路线构建方法的多功能性。为了证明我们的方法的普遍性,我们在北极海洋和波罗的海中介绍了例子。本手稿中概述的技术是通用的,因此可以应用于具有不同特征的血管。我们的方法不仅可以拥有一个船只计划程序,而且我们概述了该工作流程如何适用于更广泛的社区,例如商业和乘客运输。
translated by 谷歌翻译
尽管基于深度学习的单眼行人检测方法取得了长足的进步,但它们仍然容易受到沉重的阻塞。使用多视图信息融合是一个潜在的解决方案,但由于缺乏注释的培训样本,因此应用程序有限,因此可以增加过度拟合的风险。为了解决这个问题,提出了一种数据增强方法,以随机生成3D圆柱体阻塞的地面平面,该缸的平均规模是行人的平均大小,并预测了多种视图,以减轻训练过度拟合的影响。此外,每个视图的特征映射都通过使用同符,将每个视图的特征图投影到不同高度的多个平行平面,这使CNN可以充分利用每个行人高度上的特征来推断地面上的行人位置。与最先进的基于深度学习的方法相比,提出的3Drom方法具有大大提高的性能。
translated by 谷歌翻译