基于变压器的体系结构已在各种视觉域(最著名的图像和视频)中变得更具竞争力。虽然先前的工作已经孤立地研究了这些模式,但拥有一个共同的体系结构表明,人们可以训练单个统一模型以多种视觉方式。事先尝试进行统一建模通常使用针对视觉任务量身定制的体系结构,或与单个模态模型相比获得较差的性能。在这项工作中,我们表明可以使用蒙版的自动编码来在图像和视频上训练简单的视觉变压器,而无需任何标记的数据。该单个模型学习了与图像和视频基准上的单模式表示相当或更好的视觉表示,同时使用了更简单的体系结构。特别是,我们的单一预算模型可以进行审核,以在ImageNet上获得86.5%的速度,而在挑战性的事物V2视频基准测试中,可以实现75.3%的范围。此外,可以通过丢弃90%的图像和95%的视频补丁来学习该模型,从而实现非常快速的训练。
translated by 谷歌翻译
基于保证金的损失,尤其是一级分类损失,提高了对策系统(CMS)的概括能力,但是由于欺骗攻击而随着通道变化的降解而未测试其可靠性。我们的实验旨在通过两种方式解决这个问题:首先,通过研究各种编解码器模拟的影响及其相应参数的影响,即比特率,不连续传输(DTX)和损失,对基于单级分类的性能CM系统;其次,通过测试基于保证金损失的各种设置在训练中的功效,并在编解码器模拟数据上评估我们的CM系统。还探讨了多条件培训(MCT)以及各种数据馈送和自定义的迷你批次策略,以处理新数据设置中的增加可变性,并找到最佳设置以执行上述实验。我们的实验结果表明,对嵌入空间的严格限制会降低单级分类模型的性能。 MCT相对将性能提高35.55 \%,自定义迷你批次捕获了新数据设置的更广泛的功能。而改变编解码器参数对对策系统的性能产生了重大影响。
translated by 谷歌翻译
Pyro is a probabilistic programming language built on Python as a platform for developing advanced probabilistic models in AI research. To scale to large datasets and high-dimensional models, Pyro uses stochastic variational inference algorithms and probability distributions built on top of PyTorch, a modern GPU-accelerated deep learning framework. To accommodate complex or model-specific algorithmic behavior, Pyro leverages Poutine, a library of composable building blocks for modifying the behavior of probabilistic programs.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
The machine translation mechanism translates texts automatically between different natural languages, and Neural Machine Translation (NMT) has gained attention for its rational context analysis and fluent translation accuracy. However, processing low-resource languages that lack relevant training attributes like supervised data is a current challenge for Natural Language Processing (NLP). We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation. With active learning, a semi-supervised machine learning strategy, the training algorithm determines which unlabeled data would be the most beneficial for obtaining labels using selected query techniques. We implemented two model-driven acquisition functions for selecting the samples to be validated. This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM) , active learning least confidence based model (ALLCM), and active learning margin sampling based model (ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy (BLEU) metric has been used to evaluate system results. The BLEU scores of BM, FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively. The findings in this paper demonstrate that active learning techniques helps the model to converge early and improve the overall quality of the translation system.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译
As language models have grown in parameters and layers, it has become much harder to train and infer with them on single GPUs. This is severely restricting the availability of large language models such as GPT-3, BERT-Large, and many others. A common technique to solve this problem is pruning the network architecture by removing transformer heads, fully-connected weights, and other modules. The main challenge is to discern the important parameters from the less important ones. Our goal is to find strong metrics for identifying such parameters. We thus propose two strategies: Cam-Cut based on the GradCAM interpretations, and Smooth-Cut based on the SmoothGrad, for calculating the importance scores. Through this work, we show that our scoring functions are able to assign more relevant task-based scores to the network parameters, and thus both our pruning approaches significantly outperform the standard weight and gradient-based strategies, especially at higher compression ratios in BERT-based models. We also analyze our pruning masks and find them to be significantly different from the ones obtained using standard metrics.
translated by 谷歌翻译
Neoplasms (NPs) and neurological diseases and disorders (NDDs) are amongst the major classes of diseases underlying deaths of a disproportionate number of people worldwide. To determine if there exist some distinctive features in the local wiring patterns of protein interactions emerging at the onset of a disease belonging to either of these two classes, we examined 112 and 175 protein interaction networks belonging to NPs and NDDs, respectively. Orbit usage profiles (OUPs) for each of these networks were enumerated by investigating the networks' local topology. 56 non-redundant OUPs (nrOUPs) were derived and used as network features for classification between these two disease classes. Four machine learning classifiers, namely, k-nearest neighbour (KNN), support vector machine (SVM), deep neural network (DNN), random forest (RF) were trained on these data. DNN obtained the greatest average AUPRC (0.988) among these classifiers. DNNs developed on node2vec and the proposed nrOUPs embeddings were compared using 5-fold cross validation on the basis of average values of the six of performance measures, viz., AUPRC, Accuracy, Sensitivity, Specificity, Precision and MCC. It was found that nrOUPs based classifier performed better in all of these six performance measures.
translated by 谷歌翻译