近年来,Imbersive显示器(例如VR耳机,AR眼镜,多视图显示器,自由点电视)已成为一种新的展示技术,与传统显示相比,提供了更好的视觉体验和观众的参与度。随着3D视频和展示技术的发展,高动态范围(HDR)摄像机和显示器的消费市场迅速增长。缺乏适当的实验数据是3D HDR视频技术领域的主要研究工作的关键障碍。同样,足够的现实世界多曝光实验数据集的不可用是用于HDR成像研究的主要瓶颈,从而限制了观众的体验质量(QOE)。在本文中,我们介绍了在印度理工学院马德拉斯校园内捕获的多元化立体曝光数据集,该数据集是多元化的动植物的所在地。该数据集使用ZED立体相机捕获,并提供户外位置的复杂场景,例如花园,路边景观,节日场地,建筑物和室内地区,例如学术和居住区。提出的数据集可容纳宽深度范围,复杂的深度结构,使物体运动复杂化,照明变化,丰富的色彩动态,纹理差异,除了通过移动摄像机和背景运动引入的显着随机性。拟议的数据集可公开向研究界公开使用。此外,详细描述了捕获,对齐和校准多曝光立体视频和图像的过程。最后,我们讨论了有关HDR成像,深度估计,一致的音调映射和3D HDR编码的进度,挑战,潜在用例和未来研究机会。
translated by 谷歌翻译
这些年来,展示技术已经发展。开发实用的HDR捕获,处理和显示解决方案以将3D技术提升到一个新的水平至关重要。多曝光立体声图像序列的深度估计是开发成本效益3D HDR视频内容的重要任务。在本文中,我们开发了一种新颖的深度体系结构,以进行多曝光立体声深度估计。拟议的建筑有两个新颖的组成部分。首先,对传统立体声深度估计中使用的立体声匹配技术进行了修改。对于我们体系结构的立体深度估计部分,部署了单一到stereo转移学习方法。拟议的配方规避了成本量构造的要求,该要求由基于重新编码的单码编码器CNN取代,具有不同的重量以进行功能融合。基于有效网络的块用于学习差异。其次,我们使用强大的视差特征融合方法组合了从不同暴露水平上从立体声图像获得的差异图。使用针对不同质量度量计算的重量图合并在不同暴露下获得的差异图。获得的最终预测差异图更强大,并保留保留深度不连续性的最佳功能。提出的CNN具有使用标准动态范围立体声数据或具有多曝光低动态范围立体序列的训练的灵活性。在性能方面,所提出的模型超过了最新的单眼和立体声深度估计方法,无论是定量还是质量地,在具有挑战性的场景流以及暴露的Middlebury立体声数据集上。该体系结构在复杂的自然场景中表现出色,证明了其对不同3D HDR应用的有用性。
translated by 谷歌翻译
We introduce an emerging AI-based approach and prototype system for assisting team formation when researchers respond to calls for proposals from funding agencies. This is an instance of the general problem of building teams when demand opportunities come periodically and potential members may vary over time. The novelties of our approach are that we: (a) extract technical skills needed about researchers and calls from multiple data sources and normalize them using Natural Language Processing (NLP) techniques, (b) build a prototype solution based on matching and teaming based on constraints, (c) describe initial feedback about system from researchers at a University to deploy, and (d) create and publish a dataset that others can use.
translated by 谷歌翻译
机器学习技术的进步鼓励研究人员将这些技术应用于使用源代码分析(例如测试和漏洞检测)的无数软件工程任务。如此大量的研究阻碍了社区了解当前的研究格局。本文旨在总结用于源代码分析的机器学习中当前知识。我们审查了属于软件工程任务的十二类的研究以及已应用于解决它们的相应的机器学习技术,工具和数据集。为此,我们进行了广泛的文献搜索,并确定了2011年至2021年之间发表的479项主要研究。我们在确定的研究的帮助下总结了我们的观察结果和发现。我们的发现表明,将机器学习技术用于源代码分析任务的使用始终在增加。我们综合了常用的步骤和每个任务的总体工作流程,并总结了所使用的机器学习技术。我们确定在此上下文中可用的可用数据集和工具的全面列表。最后,本文讨论了该领域的感知挑战,包括标准数据集的可用性,可重复性和可复制性以及硬件资源。
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
Large training data and expensive model tweaking are standard features of deep learning for images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which raises privacy concerns. Existing solutions are either too expensive to be practical or do not sufficiently protect the confidentiality of data and models. In this paper, we study and compare novel \emph{image disguising} mechanisms, DisguisedNets and InstaHide, aiming to achieve a better trade-off among the level of protection for outsourced DNN model training, the expenses, and the utility of data. DisguisedNets are novel combinations of image blocktization, block-level random permutation, and two block-level secure transformations: random multidimensional projection (RMT) and AES pixel-level encryption (AES). InstaHide is an image mixup and random pixel flipping technique \cite{huang20}. We have analyzed and evaluated them under a multi-level threat model. RMT provides a better security guarantee than InstaHide, under the Level-1 adversarial knowledge with well-preserved model quality. In contrast, AES provides a security guarantee under the Level-2 adversarial knowledge, but it may affect model quality more. The unique features of image disguising also help us to protect models from model-targeted attacks. We have done an extensive experimental evaluation to understand how these methods work in different settings for different datasets.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
Tsetlin Machine (TM) has been gaining popularity as an inherently interpretable machine leaning method that is able to achieve promising performance with low computational complexity on a variety of applications. The interpretability and the low computational complexity of the TM are inherited from the Boolean expressions for representing various sub-patterns. Although possessing favorable properties, TM has not been the go-to method for AI applications, mainly due to its conceptual and theoretical differences compared with perceptrons and neural networks, which are more widely known and well understood. In this paper, we provide detailed insights for the operational concept of the TM, and try to bridge the gap in the theoretical understanding between the perceptron and the TM. More specifically, we study the operational concept of the TM following the analytical structure of perceptrons, showing the resemblance between the perceptrons and the TM. Through the analysis, we indicated that the TM's weight update can be considered as a special case of the gradient weight update. We also perform an empirical analysis of TM by showing the flexibility in determining the clause length, visualization of decision boundaries and obtaining interpretable boolean expressions from TM. In addition, we also discuss the advantages of TM in terms of its structure and its ability to solve more complex problems.
translated by 谷歌翻译