基于强大的预训练语言模型(PLM)的密集检索方法(DR)方法取得了重大进步,并已成为现代开放域问答系统的关键组成部分。但是,他们需要大量的手动注释才能进行竞争性,这是不可行的。为了解决这个问题,越来越多的研究作品最近着重于在低资源场景下改善DR绩效。这些作品在培训所需的资源和采用各种技术的资源方面有所不同。了解这种差异对于在特定的低资源场景下选择正确的技术至关重要。为了促进这种理解,我们提供了针对低资源DR的主流技术的彻底结构化概述。根据他们所需的资源,我们将技术分为三个主要类别:(1)仅需要文档; (2)需要文件和问题; (3)需要文档和提问对。对于每种技术,我们都会介绍其一般形式算法,突出显示开放的问题和利弊。概述了有希望的方向以供将来的研究。
translated by 谷歌翻译
由于有限的有效载荷能力有限,因此在山区环境中的救援任务几乎无法通过标准的腿部机器人或飞行机器人来实现。我们提出了一个新颖的概念,用于绳索攀岩机器人,该机器人可以谈判最新的斜坡并承担重载的有效载荷。机器人通过绳子固定在山上,并配备了一条腿来推向山上并开始跳跃动作。在跳跃之间,提升机被用来绕/放开绳索,以垂直移动并影响横向运动。这种简单的(但有效)的两倍致动,使系统能够实现高安全性和能源效率。确实,绳索可以防止机器人掉落,同时弥补了大部分重量,从而大大减少了腿部执行器所需的努力。我们还提出了一种最佳控制策略,以生成克服障碍的点对点轨迹。由于使用了自定义简化的机器人模型,我们可以实现快速计算时间($ <$ 1 s)。我们使用完整的机器人模型验证了凉亭模拟中生成的最佳运动,显示了提出的方法的有效性,并确认了我们概念的兴趣。最后,我们进行了可及性分析,表明可实现的目标区域受到脚壁接触的摩擦特性的强烈影响。
translated by 谷歌翻译
在本文中,我们专注于在线学习主动视觉在未知室内环境中的对象的搜索(AVS)的最优策略问题。我们建议POMP++,规划战略,介绍了经典的部分可观察蒙特卡洛规划(POMCP)框架之上的新制剂,允许免费培训,在线政策在未知的环境中学习。我们提出了一个新的信仰振兴战略,允许使用POMCP与动态扩展状态空间来解决在线生成平面地图的。我们评估我们在两个公共标准数据集的方法,AVD由是从真正的3D场景渲染扫描真正的机器人平台和人居ObjectNav收购,用>10%,比国家的the-改善达到最佳的成功率技术方法。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
The open-radio access network (O-RAN) embraces cloudification and network function virtualization for base-band function processing by dis-aggregated radio units (RUs), distributed units (DUs), and centralized units (CUs). These enable the cloud-RAN vision in full, where multiple mobile network operators (MNOs) can install their proprietary or open RUs, but lease on-demand computational resources for DU-CU functions from commonly available open-clouds via open x-haul interfaces. In this paper, we propose and compare the performances of min-max fairness and Vickrey-Clarke-Groves (VCG) auction-based x-haul and DU-CU resource allocation mechanisms to create a multi-tenant O-RAN ecosystem that is sustainable for small, medium, and large MNOs. The min-max fair approach minimizes the maximum OPEX of RUs through cost-sharing proportional to their demands, whereas the VCG auction-based approach minimizes the total OPEX for all resources utilized while extracting truthful demands from RUs. We consider time-wavelength division multiplexed (TWDM) passive optical network (PON)-based x-haul interfaces where PON virtualization technique is used to flexibly provide optical connections among RUs and edge-clouds at macro-cell RU locations as well as open-clouds at the central office locations. Moreover, we design efficient heuristics that yield significantly better economic efficiency and network resource utilization than conventional greedy resource allocation algorithms and reinforcement learning-based algorithms.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to attain the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one. To avoid these deviations, the shape of the die can be computationally optimized, which has already been investigated in the literature using classical optimization approaches. A new approach in the field of shape optimization is the utilization of Reinforcement Learning (RL) as a learning-based optimization algorithm. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment. While not necessarily superior to classical, e.g., gradient-based or evolutionary, optimization algorithms for one single problem, RL techniques are expected to perform especially well when similar optimization tasks are repeated since the agent learns a more general strategy for generating optimal shapes instead of concentrating on just one single problem. In this work, we investigate this approach by applying it to two 2D test cases. The flow-channel geometry can be modified by the RL agent using so-called Free-Form Deformation, a method where the computational mesh is embedded into a transformation spline, which is then manipulated based on the control-point positions. In particular, we investigate the impact of utilizing different agents on the training progress and the potential of wall time saving by utilizing multiple environments during training.
translated by 谷歌翻译
The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces, and some promising properties like mode connectivity. However, finding the right permutation is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature, under several conditions for both optimal transport finding and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with state-of-art results from the literature.
translated by 谷歌翻译