美国和全球的两个主要死亡原因是中风和心肌梗塞。两者的根本原因是由破裂或侵蚀的不稳定的动脉粥样硬化斑块释放的,这些斑块阻塞了心脏(心肌梗塞)或大脑(中风)的血管。临床研究表明,在斑块破裂或侵蚀事件中,斑块组成比病变大小更重要。为了确定斑块组成,计算了3D心血管免疫荧光图像的各种细胞类型的斑块病变。但是,手动计算这些细胞是昂贵的,耗时的,并且容易发生人为错误。手动计数的这些挑战激发了对自动化方法进行定位和计算图像中细胞的需求。这项研究的目的是开发一种自动方法,以最少的注释工作在3D免疫荧光图像中准确检测和计数细胞。在这项研究中,我们使用弱监督的学习方法使用点注释来训练悬停网络分割模型,以检测荧光图像中的核。使用点注释的优点是,与像素的注释相比,它们需要更少的精力。为了使用点注释训练悬停的网络模型,我们采用了一种普遍使用的群集标记方法,将点注释转换为精确的细胞核二进制掩模。传统上,这些方法从点注释产生了二进制面具,使该物体周围的区域未标记(通常在模型训练中被忽略)。但是,这些区域可能包含重要信息,有助于确定细胞之间的边界。因此,我们在这些区域使用了熵最小化的损失函数,以鼓励模型在未标记区域上输出更自信的预测。我们的比较研究表明,使用我们的弱训练的悬停网络模型...
translated by 谷歌翻译
协作过滤算法的优点是不需要敏感的用户或项目信息来提供建议。但是,他们仍然遭受与公平相关的问题的困扰,例如受欢迎程度偏见。在这项工作中,我们认为,当未向研究人员提供其他用户或项目信息时,受欢迎程度偏差通常会导致其他偏见。我们在书籍中使用书籍评分的常用数据集中的建议案例中检查了我们的假设。我们使用公开可用的外部资源将其丰富了作者信息。我们发现流行的书籍主要是由美国公民在数据集中撰写的,并且与用户的配置文件相比,流行的协作过滤算法往往会过分推荐这些书籍。我们得出的结论是,学者社区应进一步研究受欢迎程度偏见的社会含义。
translated by 谷歌翻译
在这项研究中,将放射学方法扩展到用于组织分类的光学荧光分子成像数据,称为“验光”。荧光分子成像正在出现在头颈部鳞状细胞癌(HNSCC)切除期间的精确手术引导。然而,肿瘤到正常的组织对比与靶分子表皮生长因子受体(EGFR)的异质表达的内在生理局限性混淆。验光学试图通过探测荧光传达的EGFR表达中的质地模式差异来改善肿瘤识别。从荧光图像样品中提取了总共1,472个标准化的验光特征。涉及支持矢量机分类器的监督机器学习管道接受了25个顶级功能的培训,这些功能由最小冗余最大相关标准选择。通过将切除组织的图像贴片分类为组织学确认的恶性肿瘤状态,将模型预测性能与荧光强度阈值方法进行了比较。与荧光强度阈值方法相比,验光方法在所有测试集样品中提供了一致的预测准确性(无剂量)(平均精度为89%vs. 81%; P = 0.0072)。改进的性能表明,将放射线学方法扩展到荧光分子成像数据为荧光引导手术中的癌症检测提供了有希望的图像分析技术。
translated by 谷歌翻译
减少的牵引力限制了移动机器人系统抵抗或施加大型外部负载的能力,例如拉紧有效载荷。一种简单且通用的解决方案是将束缚在天然发生的物体周围,以利用卡普斯坦效应并呈指数放大的固定力。实验表明,理想化的Capstan模型解释了对常见不规则室外物体(树木,岩石,柱子)经历的力放大。适用于可变环境条件,这种指数放大方法可以串联或与机器人团队并行利用单个或多个capstan对象。这种适应性允许一系列潜在配置,对于当对象无法完全包围或抓住时,特别有用。这些原则已通过移动平台证明(1)控制有效载荷的降低和逮捕,(2)以实现有效载荷的平面控制,以及(3)充当更大范围平台的锚点。我们显示了一个简单的系绳,包裹在沙子上的浅石头上,放大了低牵引力平台的持有力量,最多可达774倍。
translated by 谷歌翻译
生物视觉系统的神经基础在实验上研究很具有挑战性,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为改善我们对这一复杂系统的理解提供各种目标,不仅充当硅中新假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,以逐步桥接桥梁生物和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的反应,并通过数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼动。基准挑战将基于固定测试集​​中神经元响应的预测性能对模型进行对模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉符号+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译
医疗人工智能(AI)的最新进展已提供了可以达到临床专家水平绩效的系统。但是,当在与训练环境不同的临床环境中评估时,这种系统往往会证明次优的“分布式”性能。一种常见的缓解策略是使用特定地点数据为每个临床环境开发单独的系统[1]。但是,这很快变得不切实际,因为医疗数据很耗时,可以注释且昂贵[2]。因此,“数据有效概括”的问题给医学AI开发带来了持续的困难。尽管代表性学习的进展显示出希望,但并未对其好处进行严格的研究,特别是用于分布的设置。为了应对这些挑战,我们提出了RESEDIS,这是一种统一的代表学习策略,以提高医学成像AI的鲁棒性和数据效率。雷雷迪斯使用大规模监督转移学习与自我监督学习的通用组合,几乎不需要特定于任务的自定义。我们研究各种医学成像任务,并使用回顾性数据模拟三个现实的应用程序场景。 RESEDIS表现出明显改善的分布性能,而在强有力的基线上,诊断准确性相对相对提高了11.5%。更重要的是,我们的策略会导致对医学成像AI的强大数据有效的概括,并使用跨任务的1%至33%的重新培训数据匹配强有力的监督基线。这些结果表明,Repedis可以显着加速医学成像AI开发的生命周期,从而为医学成像AI提供了重要的一步,以产生广泛的影响。
translated by 谷歌翻译
在这一荟萃术中,我们探索了道德人工智能(AI)设计实施的三个不同角度,包括哲学伦理观点,技术观点和通过政治镜头进行框架。我们的定性研究包括一篇文献综述,该综述通过讨论前面发表的对比度上下,自下而上和混合方法的价值和缺点,突出了这些角度的交叉引用。对该框架的小说贡献是政治角度,该角度构成了人工智能中的道德规范,要么由公司和政府决定,并通过政策或法律(来自顶部)强加于人,或者是人民要求的道德(从底部出现) ,以及自上而下,自下而上和混合技术,即AI在道德构造和考虑到其用户中的发展方式以及对世界的预期和意外后果和长期影响。作为自下而上的应用技术方法和AI伦理原则作为一种实际的自上而下方法,重点是强化学习。这项调查包括现实世界中的案例研究,以基于历史事实,当前的世界环境以及随之而来的现实,就AI的伦理和理论未来的思想实验进行了有关AI伦理和理论未来思想实验的哲学辩论。
translated by 谷歌翻译
与痴呆症相关的认知障碍(CI)在全球范围内影响超过5500万人,并且每3秒钟以一个新病例的速度迅速增长。随着临床试验反复出现的失败,早期诊断至关重要,但是在低水平和中等收入国家中,全球75%的痴呆症病例未被诊断为90%。众所周知,当前的诊断方法是复杂的,涉及对医学笔记,大量认知测试,昂贵的脑部扫描或脊柱液体测试的手动审查。与CI相关的信息经常在电子健康记录(EHR)中找到,并且可以为早期诊断提供重要线索,但是专家的手动审查是繁琐的,并且容易发生。该项目开发了一种新型的最新自动筛选管道,用于可扩展和高速发现EHR中的CI。为了了解EHR中复杂语言结构的语言环境,构建了一个8,656个序列的数据库,以训练基于注意力的深度学习自然语言处理模型以对序列进行分类。使用序列级别分类器开发了基于逻辑回归的患者级别预测模型。深度学习系统的精度达到了93%,AUC = 0.98,以识别其EHR中没有较早诊断,与痴呆有关的诊断代码或与痴呆有关的药物的患者。否则,这些患者将未被发现或检测到太晚。 EHR筛选管道已部署在Neurahealthnlp中,这是一种用于自动化和实时CI筛选的Web应用程序,只需将EHR上传到浏览器中即可。 Neurahealthnlp更便宜,更快,更容易获得,并且胜过当前的临床方法,包括基于文本的分析和机器学习方法。它使得早期诊断可在稀缺的医疗服务中可行,但可访问的互联网或蜂窝服务。
translated by 谷歌翻译
了解细胞类型的多样性及其在大脑中的功能是神经科学中的关键挑战之一。大规模数据集的出现引起了细胞类型分类的不偏不倚和定量方法。我们提出了GraphDino,一种学习神经元3D形态的低尺寸表示的纯粹数据驱动方法。 GraphDino是一种新的图形表示,用于在变压器模型上利用自我监督学习的空间图表。它在节点与经典图卷积处理之间的注意力全局交互之间平滑地插值。我们表明,该方法能够屈服于与基于手动特征的分类相当的形态细胞型聚类,并且对两种不同物种和皮质区域的专家标记的细胞类型表示良好的对应关系。我们的方法适用于在数据集中的样本是图形和图形级嵌入的设置中的神经科学中。
translated by 谷歌翻译