在这项研究中,将放射学方法扩展到用于组织分类的光学荧光分子成像数据,称为“验光”。荧光分子成像正在出现在头颈部鳞状细胞癌(HNSCC)切除期间的精确手术引导。然而,肿瘤到正常的组织对比与靶分子表皮生长因子受体(EGFR)的异质表达的内在生理局限性混淆。验光学试图通过探测荧光传达的EGFR表达中的质地模式差异来改善肿瘤识别。从荧光图像样品中提取了总共1,472个标准化的验光特征。涉及支持矢量机分类器的监督机器学习管道接受了25个顶级功能的培训,这些功能由最小冗余最大相关标准选择。通过将切除组织的图像贴片分类为组织学确认的恶性肿瘤状态,将模型预测性能与荧光强度阈值方法进行了比较。与荧光强度阈值方法相比,验光方法在所有测试集样品中提供了一致的预测准确性(无剂量)(平均精度为89%vs. 81%; P = 0.0072)。改进的性能表明,将放射线学方法扩展到荧光分子成像数据为荧光引导手术中的癌症检测提供了有希望的图像分析技术。
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译
数据分析方法的组合,提高计算能力和改进的传感器可以实现定量颗粒状,基于细胞的分析。我们描述了与组织解释和调查AI方法有关的丰富应用挑战集,目前用于应对这些挑战。我们专注于一类针对性的人体组织分析 - 组织病理学 - 旨在定量表征疾病状态,患者结果预测和治疗转向。
translated by 谷歌翻译
目的:基于深度学习的放射素学(DLR)在医学图像分析中取得了巨大的成功,并被认为是依赖手工特征的常规放射线学的替代。在这项研究中,我们旨在探索DLR使用预处理PET/CT预测鼻咽癌(NPC)中5年无进展生存期(PFS)的能力。方法:总共招募了257名患者(内部/外部队列中的170/87),具有晚期NPC(TNM III期或IVA)。我们开发了一个端到端的多模式DLR模型,其中优化了3D卷积神经网络以从预处理PET/CT图像中提取深度特征,并预测了5年PFS的概率。作为高级临床特征,TNM阶段可以集成到我们的DLR模型中,以进一步提高预后性能。为了比较常规放射素学和DLR,提取了1456个手工制作的特征,并从54种特征选择方法和9种分类方法的54个交叉组合中选择了最佳常规放射线方法。此外,使用临床特征,常规放射线学签名和DLR签名进行风险组分层。结果:我们使用PET和CT的多模式DLR模型比最佳常规放射线方法获得了更高的预后性能。此外,多模式DLR模型仅使用PET或仅CT优于单模式DLR模型。对于风险组分层,常规的放射线学签名和DLR签名使内部和外部队列中的高风险患者群体之间有显着差异,而外部队列中的临床特征则失败。结论:我们的研究确定了高级NPC中生存预测的潜在预后工具,表明DLR可以为当前TNM分期提供互补值。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
前列腺癌是男性癌症死亡的最常见原因之一。对非侵入性和准确诊断方法的需求不断增长,促进目前在临床实践中的标准前列腺癌风险评估。尽管如此,从多游幂磁共振图像中开发前列腺癌诊断中的计算机辅助癌症诊断仍然是一个挑战。在这项工作中,我们提出了一种新的深度学习方法,可以通过构建两阶段多数量多流卷积神经网络(CNN)基于架构架构的相应磁共振图像中的前列腺病变自动分类。在不实现复杂的图像预处理步骤或第三方软件的情况下,我们的框架在接收器操作特性(ROC)曲线值为0.87的接收器下实现了该区域的分类性能。结果表现出大部分提交的方法,并分享了普罗妥克斯挑战组织者报告的最高价值。我们拟议的基于CNN的框架反映了辅助前列腺癌中的医学图像解释并减少不必要的活组织检查的可能性。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
肺癌是全球癌症死亡的主要原因,肺腺癌是最普遍的肺癌形式。 EGFR阳性肺腺癌已被证明对TKI治疗的反应率很高,这是肺癌分子测试的基本性质。尽管目前的指南考虑必要测试,但很大一部分患者并未常规化,导致数百万的人未接受最佳治疗肺癌。测序是EGFR突变分子测试的黄金标准,但是结果可能需要数周的时间才能回来,这在时间限制的情况下并不理想。能够快速,便宜地检测EGFR突变的替代筛查工具的开发,同时保存组织以进行测序可以帮助减少受比较治疗的患者的数量。我们提出了一种多模式方法,该方法将病理图像和临床变量整合在一起,以预测EGFR突变状态,迄今为止最大的临床队列中的AUC为84%。这样的计算模型可以以很少的额外成本进行大部分部署。它的临床应用可以减少中国接受亚最佳治疗的患者数量53.1%,在美国将高达96.6%的患者减少96.6%。
translated by 谷歌翻译
乳腺癌是女性最常见的恶性肿瘤,每年负责超过50万人死亡。因此,早期和准确的诊断至关重要。人类专业知识是诊断和正确分类乳腺癌并定义适当的治疗,这取决于评价不同生物标志物如跨膜蛋白受体HER2的表达。该评估需要几个步骤,包括免疫组织化学或原位杂交等特殊技术,以评估HER2状态。通过降低诊断中的步骤和人类偏差的次数的目标,赫洛挑战是组织的,作为第16届欧洲数字病理大会的并行事件,旨在自动化仅基于苏木精和曙红染色的HER2地位的评估侵袭性乳腺癌的组织样本。评估HER2状态的方法是在全球21个团队中提出的,并通过一些提议的方法实现了潜在的观点,以推进最先进的。
translated by 谷歌翻译
早期发现癌症是一种挑战性的医学问题。癌症患者的血液血清富含异质分泌脂质结合的细胞内囊泡(EVS),其具有复杂的信息和生物标志物,代表其原产地,目前在液检和癌症筛查领域中研究。振动光谱提供了非侵入性方法,用于评估复杂生物样品中的结构和生物物理性质。在该试点研究中,对来自来自四个不同癌症亚型(结直肠癌,肝细胞癌,乳腺癌和胰腺癌)和五名健康患者(对照组)组成的9例血浆中提取的多种拉曼光谱测量测量。 FTIR(傅里叶变换红外)光谱测量是作为拉曼分析的互补方法,在四个癌症亚型中的两种。 Adaboost随机森林分类器,决策树和支持向量机(SVM)区分癌症EV的基线校正拉曼光谱从健康对照(18 Spectra)的那些,当减少到频谱频率范围时,分类精度高于90% 1800至1940年反厘米,经过50:50培训:测试分裂。 14 Spectra的FTIR分类精度显示了80%的分类准确性。我们的研究结果表明,基本机器学习算法是强大的应用智能工具,以区分癌症患者EVS的复杂振动光谱来自健康患者。这些实验方法将希望作为人工智能辅助早期癌症筛查的有效和有效的液检活动。
translated by 谷歌翻译
人表皮生长因子受体2(HER2)生物标志物的免疫组织化学(IHC)染色在乳腺组织分析,临床前研究和诊断决策中广泛实践,指导癌症治疗和发病机制调查。 HER2染色需要由组织医学表演表演的艰苦组织处理和化学处理,这通常需要一天,以便在实验室中准备,增加分析时间和相关成本。在这里,我们描述了一种基于深度学习的虚拟HER2 IHC染色方法,其使用条件生成的对抗网络培训,训练以便将未标记/标记的乳房组织部分的自发荧光显微镜图像快速转化为明亮场当量的显微镜图像,匹配标准HER2 IHC染色在相同的组织部分上进行化学进行。通过定量分析证明了这一虚拟HER2染色框架的功效,其中三个董事会认证的乳房病理学家盲目地评级了HER2的几乎染色和免疫化化学染色的HER2整个幻灯片图像(WSIS),揭示了通过检查虚拟来确定的HER2分数IHC图像与其免疫组织化学染色的同类一样准确。通过相同的诊断师进行的第二种定量盲化研究进一步揭示了几乎染色的HER2图像在核细节,膜清晰度和染色伪像相对于其免疫组织化学染色的对应物的染色伪影等级具有相当的染色质量。这种虚拟HER2染色框架在实验室中绕过了昂贵,费力,耗时耗时的IHC染色程序,并且可以扩展到其他类型的生物标志物,以加速生命科学和生物医学工作流程的IHC组织染色。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors, particularly for immunotherapy. However, the methods to assess such properties are expensive, time-consuming, and often not routinely performed. Applying machine learning to H&E images can provide a more cost-effective screening method. Dozens of studies over the last few years have demonstrated that a variety of molecular biomarkers can be predicted from H&E alone using the advancements of deep learning: molecular alterations, genomic subtypes, protein biomarkers, and even the presence of viruses. This article reviews the diverse applications across cancer types and the methodology to train and validate these models on whole slide images. From bottom-up to pathologist-driven to hybrid approaches, the leading trends include a variety of weakly supervised deep learning-based approaches, as well as mechanisms for training strongly supervised models in select situations. While results of these algorithms look promising, some challenges still persist, including small training sets, rigorous validation, and model explainability. Biomarker prediction models may yield a screening method to determine when to run molecular tests or an alternative when molecular tests are not possible. They also create new opportunities in quantifying intratumoral heterogeneity and predicting patient outcomes.
translated by 谷歌翻译
目的:开发和验证基于临床阴性ALN的早期乳腺癌(EBC)术后预测腋窝淋巴结(ALN)转移的深度学习(DL)的主要肿瘤活检签名。方法:从2010年5月到2020年5月,共注册了1,058名具有病理证实ALN状态的eBC患者。基于关注的多实例学习(AMIL)框架,建立了一种DL核心针活检(DL-CNB)模型利用DL特征预测ALN状态,该DL特征从两位病理学家注释的乳腺CNB样本的数字化全幻灯片(WSIS)的癌症区域提取。分析了准确性,灵敏度,特异性,接收器操作特征(ROC)曲线和ROC曲线(AUC)下的区域进行评估,评估我们的模型。结果:具有VGG16_BN的最佳性DL-CNB模型作为特征提取器实现了0.816的AUC(95%置信区间(CI):0.758,0.865),以预测独立测试队列的阳性Aln转移。此外,我们的模型包含称为DL-CNB + C的临床数据,得到了0.831的最佳精度(95%CI:0.775,0.878),特别是对于50岁以下的患者(AUC:0.918,95%CI: 0.825,0.971)。 DL-CNB模型的解释表明,最高度预测ALN转移的顶部签名的特征在于包括密度($ P $ 0.015),周长($ P $ 0.009),循环($ P $ = 0.010)和方向($ p $ = 0.012)。结论:我们的研究提供了一种基于DL的基于DL的生物标志物在原发性肿瘤CNB上,以预先验证EBC患者的术前预测ALN的转移状态。
translated by 谷歌翻译
目的:利用高分辨率定量CT(QCT)成像特征来预测间质肺疾病(ILD)的纤维纤维诊断和预后。方法:40名ILD患者(20例常规间质性肺炎(UIP),20个非UIP模式ILD)由2位放射科医生的专家共识分类,随后持续了7年。记录临床变量。分割肺场后,使用基于晶格的方法(TM模型)提取了总共26个纹理特征。将TM模型与先前基于直方图的模型(HM)进行了比较,以便将UIP与非UIP分类。为了进行预后评估,进行了生存分析,将专家诊断标签与TM指标进行比较。结果:在分类分析中,TM模型的表现优于HM方法,AUC为0.70。虽然在COX回归分析中,UIP与非UIP专家标签的生存曲线在统计学上并没有差异,但TM QCT特征允许该队列的统计学意义分区。结论:TM模型在区分非UIP模式方面优于HM模型。最重要的是,TM允许将队列分配为不同的生存群体,而专家UIP与非UIP标签则不得。 QCT TM模型可以改善ILD的诊断,并提供更准确的预后,更好地指导患者管理。
translated by 谷歌翻译
成像生物标志物提供了一种无创的方法来预测治疗前免疫疗法的反应。在这项工作中,我们提出了一种从卷积神经网络(CNN)计算出的新型深度放射素特征(DRF),该特征捕获了与免疫细胞标记和整体生存有关的肿瘤特征。我们的研究使用四个MRI序列(T1加权,T1加权后对比,T2加权和FLAIR),并具有151例脑肿瘤患者的相应免疫细胞标记。该方法通过在MRI扫描的标记肿瘤区域内聚集了预训练的3D-CNN的激活图,从而提取了180个DRF。这些功能提供了编码组织异质性的区域纹理的紧凑而有力的表示。进行了一组全面的实验,以评估所提出的DRF和免疫细胞标记之间的关系,并衡量它们与整体生存的关联。结果表明,DRF和各种标记之间存在很高的相关性,以及根据这些标记分组的患者之间的显着差异。此外,将DRF,临床特征和免疫细胞标记组合为随机森林分类器的输入有助于区分短期和长期生存结果,AUC为72 \%,P = 2.36 $ \ times $ 10 $^{ - 5} $。这些结果证明了拟议的DRF作为非侵入性生物标志物在预测脑肿瘤患者的治疗反应中的有用性。
translated by 谷歌翻译
组织病理学图像提供了癌症诊断的明确来源,其中包含病理学家用来识别和分类恶性疾病的信息,并指导治疗选择。这些图像包含大量信息,其中大部分目前不可用人类的解释。有监督的深度学习方法对于分类任务非常有力,但它们本质上受注释的成本和质量限制。因此,我们开发了组织形态表型学习,这是一种无监督的方法,它不需要注释,并且通过小图像瓷砖中的歧视性图像特征的自我发现进行操作。瓷砖分为形态上相似的簇,这些簇似乎代表了自然选择下出现的肿瘤生长的复发模式。这些簇具有不同的特征,可以使用正交方法识别。应用于肺癌组织,我们表明它们与患者的结局紧密保持一致,组织病理学识别的肿瘤类型和生长模式以及免疫表型的转录组度量。
translated by 谷歌翻译
由于形态的相似性,皮肤肿瘤的组织学切片分化为个体亚型可能具有挑战性。最近,基于深度学习的方法证明了它们在这方面支持病理学家的潜力。但是,这些监督算法中的许多都需要大量的注释数据才能进行稳健开发。我们提供了一个公开可用的数据集,该数据集是七个不同的犬皮肤肿瘤的350张全滑图像,其中有13种组织学类别的12,424个多边形注释,包括7种皮肤肿瘤亚型。在评估者间实验中,我们显示了提供的标签的高稠度,尤其是对于肿瘤注释。我们通过训练深层神经网络来进一步验证数据集,以完成组织分割和肿瘤亚型分类的任务。我们的肿瘤尤其是0.7047的类平均Jaccard系数为0.7047,尤其是0.9044。对于分类,我们达到了0.9857的幻灯片级准确性。由于犬皮肤肿瘤对人肿瘤具有各种组织学同源性,因此该数据集的附加值不限于兽医病理学,而是扩展到更一般的应用领域。
translated by 谷歌翻译
乳腺癌是女性可能发生的最严重的癌症之一。通过分析组织学图像(HIS)来自动诊断乳腺癌对患者及其预后很重要。他的分类为临床医生提供了对疾病的准确了解,并使他们可以更有效地治疗患者。深度学习(DL)方法已成功地用于各种领域,尤其是医学成像,因为它们有能力自动提取功能。这项研究旨在使用他的乳腺癌对不同类型的乳腺癌进行分类。在这项研究中,我们提出了一个增强的胶囊网络,该网络使用RES2NET块和四个额外的卷积层提取多尺度特征。此外,由于使用了小的卷积内核和RES2NET块,因此所提出的方法具有较少的参数。结果,新方法的表现优于旧方法,因为它会自动学习最佳功能。测试结果表明该模型的表现优于先前的DL方法。
translated by 谷歌翻译