Structural Health Monitoring (SHM) describes a process for inferring quantifiable metrics of structural condition, which can serve as input to support decisions on the operation and maintenance of infrastructure assets. Given the long lifespan of critical structures, this problem can be cast as a sequential decision making problem over prescribed horizons. Partially Observable Markov Decision Processes (POMDPs) offer a formal framework to solve the underlying optimal planning task. However, two issues can undermine the POMDP solutions. Firstly, the need for a model that can adequately describe the evolution of the structural condition under deterioration or corrective actions and, secondly, the non-trivial task of recovery of the observation process parameters from available monitoring data. Despite these potential challenges, the adopted POMDP models do not typically account for uncertainty on model parameters, leading to solutions which can be unrealistically confident. In this work, we address both key issues. We present a framework to estimate POMDP transition and observation model parameters directly from available data, via Markov Chain Monte Carlo (MCMC) sampling of a Hidden Markov Model (HMM) conditioned on actions. The MCMC inference estimates distributions of the involved model parameters. We then form and solve the POMDP problem by exploiting the inferred distributions, to derive solutions that are robust to model uncertainty. We successfully apply our approach on maintenance planning for railway track assets on the basis of a "fractal value" indicator, which is computed from actual railway monitoring data.
translated by 谷歌翻译
在现代环境和社会问题的背景下,人们对能够识别土木工程系统的管理策略的方法的需求越来越大,最大程度地降低了结构性故障风险,同时最好计划检查和维护(I&M)流程。由于与联合系统级状态描述下的全局优化方法相关的计算复杂性,大多数可用方法将I&M决策问题简化为组件级别。在本文中,我们提出了一个有效的算法框架,用于在暴露于恶化环境的工程系统下进行推理和决策制定,从而直接在系统级别提供最佳的管理策略。在我们的方法中,决策问题被提出为部分可观察到的马尔可夫决策过程,其动态是在贝叶斯网络条件结构中编码的。该方法可以通过高斯层次结构和动态贝叶斯网络在组件之间平等或一般,不平等的恶化相关性下处理环境。在政策优化方面,我们采用了深层分散的多代理参与者 - 批评(DDMAC)强化学习方法,其中政策由批评家网络指导的参与者神经网络近似。通过在模拟环境中包括劣化依赖性,并通过在系统级别制定成本模型,DDMAC策略本质上考虑了基本系统效应。通过对疲劳恶化下的9分和钢架进行的数值实验证明了这一点。结果表明,与最先进的启发式方法相比,DDMAC政策可提供可观的好处。 DDMAC策略对系统效应的固有考虑也可以根据学习的政策来解释。
translated by 谷歌翻译
部署在医学成像任务上的机器学习模型必须配备分布外检测功能,以避免错误的预测。不确定依赖于深神经网络的分布外检测模型是否适合检测医学成像中的域移位。高斯流程可以通过其数学结构可靠地与分布数据点可靠地分开分发数据点。因此,我们为分层卷积高斯工艺提出了一个参数有效的贝叶斯层,该过程融合了在Wasserstein-2空间中运行的高斯过程,以可靠地传播不确定性。这直接用远距离的仿射操作员在分布中直接取代了高斯流程。我们对脑组织分割的实验表明,所得的架构接近了确定性分割算法(U-NET)的性能,而先前的层次高斯过程尚未实现。此外,通过将相同的分割模型应用于分布外数据(即具有病理学(例如脑肿瘤)的图像),我们表明我们的不确定性估计导致分布外检测,以优于以前的贝叶斯网络和以前的贝叶斯网络的功能基于重建的方法学习规范分布。为了促进未来的工作,我们的代码公开可用。
translated by 谷歌翻译
在桥梁到海上平台和风力涡轮机的公民和海上工程系统必须有效地管理,因为它们在其运行寿命中暴露于劣化机制,例如疲劳或腐蚀。确定最佳检查和维护政策要求在不确定性下解决复杂的连续决策问题,主要目的是有效地控制与结构失败相关的风险。解决这种复杂性,基于风险的检查计划方法,通常由动态贝叶斯网络支持,评估一组预定义的启发式决策规则,以合理简化了决策问题。然而,所产生的政策可能受到决策规则定义中考虑的有限空间的损害。避免这种限制,部分观察到的马尔可夫决策过程(POMDPS)在不确定的动作结果和观察下提供了用于随机最佳控制的原则性的数学方法,其中作为整个动态更新的状态概率分布的函数规定了最佳动作。在本文中,我们将动态贝叶斯网络与POMDPS结合在联合框架中,以获得最佳检查和维护计划,我们提供了在结构可靠性背景下开发无限和有限地平线POMDP的配方。所提出的方法是对结构部件进行疲劳劣化的情况的情况下实施和测试,证明了基于最先进的POMDP求解器的能力,用于解决潜在的规划优化问题。在数值实验中,彻底比较了POMDP和基于启发式的策略,并且结果表明POMDP与对应于传统问题设置相比,POMDP达到了大幅降低的成本。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
Attention mechanisms form a core component of several successful deep learning architectures, and are based on one key idea: ''The output depends only on a small (but unknown) segment of the input.'' In several practical applications like image captioning and language translation, this is mostly true. In trained models with an attention mechanism, the outputs of an intermediate module that encodes the segment of input responsible for the output is often used as a way to peek into the `reasoning` of the network. We make such a notion more precise for a variant of the classification problem that we term selective dependence classification (SDC) when used with attention model architectures. Under such a setting, we demonstrate various error modes where an attention model can be accurate but fail to be interpretable, and show that such models do occur as a result of training. We illustrate various situations that can accentuate and mitigate this behaviour. Finally, we use our objective definition of interpretability for SDC tasks to evaluate a few attention model learning algorithms designed to encourage sparsity and demonstrate that these algorithms help improve interpretability.
translated by 谷歌翻译
This paper deals with the problem of statistical and system heterogeneity in a cross-silo Federated Learning (FL) framework where there exist a limited number of Consumer Internet of Things (CIoT) devices in a smart building. We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed ``G-Fedfilt''. The proposed aggregator enables a structured flow of information based on the graph's topology. This behavior allows capturing the interconnection of CIoT devices and training domain-specific models. The embedded graph filter is equipped with a tunable parameter which enables a continuous trade-off between domain-agnostic and domain-specific FL. In the case of domain-agnostic, it forces G-Fedfilt to act similar to the conventional Federated Averaging (FedAvg) aggregation rule. The proposed G-Fedfilt also enables an intrinsic smooth clustering based on the graph connectivity without explicitly specified which further boosts the personalization of the models in the framework. In addition, the proposed scheme enjoys a communication-efficient time-scheduling to alleviate the system heterogeneity. This is accomplished by adaptively adjusting the amount of training data samples and sparsity of the models' gradients to reduce communication desynchronization and latency. Simulation results show that the proposed G-Fedfilt achieves up to $3.99\% $ better classification accuracy than the conventional FedAvg when concerning model personalization on the statistically heterogeneous local datasets, while it is capable of yielding up to $2.41\%$ higher accuracy than FedAvg in the case of testing the generalization of the models.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce a class of persistence-based neural network layers. Persistence-based layers allow the users to easily inject knowledge about symmetries (equivariance) respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
translated by 谷歌翻译