Structural Health Monitoring (SHM) describes a process for inferring quantifiable metrics of structural condition, which can serve as input to support decisions on the operation and maintenance of infrastructure assets. Given the long lifespan of critical structures, this problem can be cast as a sequential decision making problem over prescribed horizons. Partially Observable Markov Decision Processes (POMDPs) offer a formal framework to solve the underlying optimal planning task. However, two issues can undermine the POMDP solutions. Firstly, the need for a model that can adequately describe the evolution of the structural condition under deterioration or corrective actions and, secondly, the non-trivial task of recovery of the observation process parameters from available monitoring data. Despite these potential challenges, the adopted POMDP models do not typically account for uncertainty on model parameters, leading to solutions which can be unrealistically confident. In this work, we address both key issues. We present a framework to estimate POMDP transition and observation model parameters directly from available data, via Markov Chain Monte Carlo (MCMC) sampling of a Hidden Markov Model (HMM) conditioned on actions. The MCMC inference estimates distributions of the involved model parameters. We then form and solve the POMDP problem by exploiting the inferred distributions, to derive solutions that are robust to model uncertainty. We successfully apply our approach on maintenance planning for railway track assets on the basis of a "fractal value" indicator, which is computed from actual railway monitoring data.
translated by 谷歌翻译
在桥梁到海上平台和风力涡轮机的公民和海上工程系统必须有效地管理,因为它们在其运行寿命中暴露于劣化机制,例如疲劳或腐蚀。确定最佳检查和维护政策要求在不确定性下解决复杂的连续决策问题,主要目的是有效地控制与结构失败相关的风险。解决这种复杂性,基于风险的检查计划方法,通常由动态贝叶斯网络支持,评估一组预定义的启发式决策规则,以合理简化了决策问题。然而,所产生的政策可能受到决策规则定义中考虑的有限空间的损害。避免这种限制,部分观察到的马尔可夫决策过程(POMDPS)在不确定的动作结果和观察下提供了用于随机最佳控制的原则性的数学方法,其中作为整个动态更新的状态概率分布的函数规定了最佳动作。在本文中,我们将动态贝叶斯网络与POMDPS结合在联合框架中,以获得最佳检查和维护计划,我们提供了在结构可靠性背景下开发无限和有限地平线POMDP的配方。所提出的方法是对结构部件进行疲劳劣化的情况的情况下实施和测试,证明了基于最先进的POMDP求解器的能力,用于解决潜在的规划优化问题。在数值实验中,彻底比较了POMDP和基于启发式的策略,并且结果表明POMDP与对应于传统问题设置相比,POMDP达到了大幅降低的成本。
translated by 谷歌翻译
在现代环境和社会问题的背景下,人们对能够识别土木工程系统的管理策略的方法的需求越来越大,最大程度地降低了结构性故障风险,同时最好计划检查和维护(I&M)流程。由于与联合系统级状态描述下的全局优化方法相关的计算复杂性,大多数可用方法将I&M决策问题简化为组件级别。在本文中,我们提出了一个有效的算法框架,用于在暴露于恶化环境的工程系统下进行推理和决策制定,从而直接在系统级别提供最佳的管理策略。在我们的方法中,决策问题被提出为部分可观察到的马尔可夫决策过程,其动态是在贝叶斯网络条件结构中编码的。该方法可以通过高斯层次结构和动态贝叶斯网络在组件之间平等或一般,不平等的恶化相关性下处理环境。在政策优化方面,我们采用了深层分散的多代理参与者 - 批评(DDMAC)强化学习方法,其中政策由批评家网络指导的参与者神经网络近似。通过在模拟环境中包括劣化依赖性,并通过在系统级别制定成本模型,DDMAC策略本质上考虑了基本系统效应。通过对疲劳恶化下的9分和钢架进行的数值实验证明了这一点。结果表明,与最先进的启发式方法相比,DDMAC政策可提供可观的好处。 DDMAC策略对系统效应的固有考虑也可以根据学习的政策来解释。
translated by 谷歌翻译
有效计划的能力对于生物体和人造系统都是至关重要的。在认知神经科学和人工智能(AI)中广泛研究了基于模型的计划和假期,但是从不同的角度来看,以及难以调和的考虑(生物现实主义与可伸缩性)的不同意见(生物现实主义与可伸缩性)。在这里,我们介绍了一种新颖的方法来计划大型POMDP(Active Tree search(ACT)),该方法结合了神经科学中领先的计划理论的规范性特征和生物学现实主义(主动推论)和树木搜索方法的可扩展性AI。这种统一对两种方法都是有益的。一方面,使用树搜索可以使生物学接地的第一原理,主动推断的方法可应用于大规模问题。另一方面,主动推理为探索 - 开发困境提供了一种原则性的解决方案,该解决方案通常在树搜索方法中以启发性解决。我们的模拟表明,ACT成功地浏览了对基于抽样的方法,需要自适应探索的问题以及大型POMDP问题“ RockSample”的二进制树,其中ACT近似于最新的POMDP解决方案。此外,我们说明了如何使用ACT来模拟人类和其他解决大型计划问题的人类和其他动物的神经生理反应(例如,在海马和前额叶皮层)。这些数值分析表明,主动树搜索是神经科学和AI计划理论的原则性实现,既具有生物现实主义和可扩展性。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
主动推断是建模生物学和人造药物的行为的概率框架,该框架源于最小化自由能的原理。近年来,该框架已成功地应用于各种情况下,其目标是最大程度地提高奖励,提供可比性,有时甚至是卓越的性能与替代方法。在本文中,我们通过演示如何以及何时进行主动推理代理执行最佳奖励的动作来阐明奖励最大化和主动推断之间的联系。确切地说,我们展示了主动推理为Bellman方程提供最佳解决方案的条件 - 这种公式是基于模型的增强学习和控制的几种方法。在部分观察到的马尔可夫决策过程中,标准的主动推理方案可以为计划视野1的最佳动作产生最佳动作,但不能超越。相比之下,最近开发的递归活跃推理方案(复杂的推理)可以在任何有限的颞范围内产生最佳作用。我们通过讨论主动推理和强化学习之间更广泛的关系来补充分析。
translated by 谷歌翻译
Reinforcement learning (RL) gained considerable attention by creating decision-making agents that maximize rewards received from fully observable environments. However, many real-world problems are partially or noisily observable by nature, where agents do not receive the true and complete state of the environment. Such problems are formulated as partially observable Markov decision processes (POMDPs). Some studies applied RL to POMDPs by recalling previous decisions and observations or inferring the true state of the environment from received observations. Nevertheless, aggregating observations and decisions over time is impractical for environments with high-dimensional continuous state and action spaces. Moreover, so-called inference-based RL approaches require large number of samples to perform well since agents eschew uncertainty in the inferred state for the decision-making. Active inference is a framework that is naturally formulated in POMDPs and directs agents to select decisions by minimising expected free energy (EFE). This supplies reward-maximising (exploitative) behaviour in RL, with an information-seeking (exploratory) behaviour. Despite this exploratory behaviour of active inference, its usage is limited to discrete state and action spaces due to the computational difficulty of the EFE. We propose a unified principle for joint information-seeking and reward maximization that clarifies a theoretical connection between active inference and RL, unifies active inference and RL, and overcomes their aforementioned limitations. Our findings are supported by strong theoretical analysis. The proposed framework's superior exploration property is also validated by experimental results on partial observable tasks with high-dimensional continuous state and action spaces. Moreover, the results show that our model solves reward-free problems, making task reward design optional.
translated by 谷歌翻译
自由能原理及其必然的积极推论构成了一种生物启发的理论,该理论假设生物学作用保留在一个受限制的世界首选状态中,即它们最小化自由能。根据这一原则,生物学家学习了世界的生成模型和未来的计划行动,该模型将使代理保持稳态状态,以满足其偏好。该框架使自己在计算机中实现,因为它理解了使其计算负担得起的重要方面,例如变异推断和摊销计划。在这项工作中,我们研究了深度学习的工具,以设计和实现基于主动推断的人造代理,对自由能原理进行深入学习的呈现,调查工作与机器学习和主动推理领域相关,以及讨论实施过程中涉及的设计选择。该手稿探究了积极推理框架的新观点,将其理论方面扎根于更务实的事务中,为活跃推理的新手提供了实用指南,并为深度学习从业人员的起点提供了研究,以调查自由能源原则的实施。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
这项工作研究了以下假设:与人类驾驶状态的部分可观察到的马尔可夫决策过程(POMDP)计划可以显着提高自动高速公路驾驶的安全性和效率。我们在模拟场景中评估了这一假设,即自动驾驶汽车必须在快速连续中安全执行三个车道变化。通过观测扩大(POMCPOW)算法,通过部分可观察到的蒙特卡洛计划获得了近似POMDP溶液。这种方法的表现优于过度自信和保守的MDP基准,匹配或匹配效果优于QMDP。相对于MDP基准,POMCPOW通常将不安全情况的速率降低了一半或将成功率提高50%。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
受约束的部分可观察到的马尔可夫决策过程(CPOMDP)已用于模拟各种现实现象。但是,众所周知,它们很难解决最优性,并且只有几种近似方法来获得高质量的解决方案。在这项研究中,我们将基于网格的近似值与线性编程(LP)模型结合使用来生成CPOMDP的近似策略。我们考虑了五个CPOMDP问题实例,并对其有限和无限的地平线配方进行了详细的数值研究。我们首先通过使用精确溶液方法进行比较分析来建立近似无约束的POMDP策略的质量。然后,我们显示了基于LP的CPOMDP解决方案方法的性能,用于不同的问题实例的不同预算水平(即成本限制)。最后,我们通过应用确定性政策约束来展示基于LP的方法的灵活性,并研究这些约束对收集的奖励和CPU运行时间的影响。我们的分析表明,LP模型可以有效地为有限和无限的地平线问题生成近似策略,同时提供了将各种其他约束结合到基础模型中的灵活性。
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but also provide sufficient shaping to accomplish it. In this paper, we view reinforcement learning as inferring policies that achieve desired outcomes, rather than as a problem of maximizing rewards. To solve this inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to hand-craft reward functions for a suite of diverse manipulation and locomotion tasks and leads to effective goal-directed behaviors.
translated by 谷歌翻译
学习涉及时变和不断发展的系统动态的控制政策通常对主流强化学习算法构成了巨大的挑战。在大多数标准方法中,通常认为动作是一组刚性的,固定的选择,这些选择以预定义的方式顺序应用于状态空间。因此,在不诉诸于重大学习过程的情况下,学识渊博的政策缺乏适应动作集和动作的“行为”结果的能力。此外,标准行动表示和动作引起的状态过渡机制固有地限制了如何将强化学习应用于复杂的现实世界应用中,这主要是由于所得大的状态空间的棘手性以及缺乏概括的学术知识对国家空间未知部分的政策。本文提出了一个贝叶斯味的广义增强学习框架,首先建立参数动作模型的概念,以更好地应对不确定性和流体动作行为,然后将增强领域的概念作为物理启发的结构引入通过“极化体验颗粒颗粒建立) “维持在学习代理的工作记忆中。这些粒子有效地编码了以自组织方式随时间演变的动态学习体验。在强化领域之上,我们将进一步概括策略学习过程,以通过将过去的记忆视为具有隐式图结构来结合高级决策概念,在该结构中,过去的内存实例(或粒子)与决策之间的相似性相互联系。定义,因此,可以应用“关联记忆”原则来增强学习代理的世界模型。
translated by 谷歌翻译
积极推断是复杂系统中的认知和行为的叙述,它在贝叶斯推论的理论地幔下举起动作,感知和学习。积极的推论已经看到学术研究中的应用越来越多,特别是在寻求模拟人类或动物行为的领域。虽然近年来,来自有效推理文献产生的一些代码已经用Python和Julia这样的开源语言编写,迄今为止,用于模拟活动推理代理的最流行的软件是SPM,Matlab库的DEM工具箱最初开发用于神经影像数据的统计分析和建模。因此,在纯粹的数字和科学学科的应用程序方面,表现出对积极推断的兴趣,因此为在开源科学计算语言中模拟了激活推论的通用,广泛可用的和用户友好的代码,这一切都表现为纯粹的数字以及跨科学学科的应用程序。像python。我们在这里呈现的Python包,Pymdp(参见https://github.com/fifer-active/pymdp)表示朝这个方向的重要一步:即,我们提供了用于模拟有源推断的第一个开源包,部分 - 可观察的马尔可夫决策过程或POMDPS。我们查看包的结构,并解释了模块化设计和定制等优点,同时提供沿着文本代码块,以便演示如何使用它以轻松地构建和运行主动推断过程。我们开发了PyMDP,以增加有效推理框架的可访问性和暴露于有多种纪律背景的研究人员,工程师和开发人员。本着开源软件的精神,我们也希望它在不断增长的积极推理界中产生新的创新,发展和合作。
translated by 谷歌翻译
在钢筋学习(RL)中,代理必须探索最初未知的环境,以便学习期望的行为。当RL代理部署在现实世界环境中时,安全性是主要关注的。受约束的马尔可夫决策过程(CMDPS)可以提供长期的安全约束;但是,该代理人可能会违反探索其环境的制约因素。本文提出了一种称为显式探索,漏洞探索或转义($ e ^ {4} $)的基于模型的RL算法,它将显式探索或利用($ e ^ {3} $)算法扩展到强大的CMDP设置。 $ e ^ 4 $明确地分离开发,探索和逃脱CMDP,允许针对已知状态的政策改进的有针对性的政策,发现未知状态,以及安全返回到已知状态。 $ e ^ 4 $强制优化了从一组CMDP模型的最坏情况CMDP上的这些策略,该模型符合部署环境的经验观察。理论结果表明,在整个学习过程中满足安全限制的情况下,在多项式时间中找到近最优的约束政策。我们讨论了稳健约束的离线优化算法,以及如何基于经验推理和先验知识来结合未知状态过渡动态的不确定性。
translated by 谷歌翻译
制定和实施结构健康监测系统的主要动机是获得有关制定结构和维护结构和维护的能力的前景。遗憾的是,对于对应于感兴趣结构的健康状态信息的测量数据的描述性标签很少在监控系统之前可用。该问题限制了传统监督和无监督方法对机器学习的适用性,以便在统计分类机制下进行决策支持SHM系统。本文提出了一种基于风险的主动学习的制定,其中类标签信息的查询被每个初期数据点的所述信息的预期值引导。当应用于结构性健康监测时,可以将类标签查询映射到兴趣结构的检查中,以确定其健康状态。在本文中,通过代表数值示例解释和可视化基于风险的主动学习过程,随后应用于Z24桥梁基准。案例研究结果表明,通过统计分类器的基于风险的主动学习可以改善决策者的性能,从而考虑决策过程本身。
translated by 谷歌翻译