The generation of Chinese fonts has a wide range of applications. The currently predominated methods are mainly based on deep generative models, especially the generative adversarial networks (GANs). However, existing GAN-based models usually suffer from the well-known mode collapse problem. When mode collapse happens, the kind of GAN-based models will be failure to yield the correct fonts. To address this issue, we introduce a one-bit stroke encoding and a few-shot semi-supervised scheme (i.e., using a few paired data as semi-supervised information) to explore the local and global structure information of Chinese characters respectively, motivated by the intuition that strokes and characters directly embody certain local and global modes of Chinese characters. Based on these ideas, this paper proposes an effective model called \textit{StrokeGAN+}, which incorporates the stroke encoding and the few-shot semi-supervised scheme into the CycleGAN model. The effectiveness of the proposed model is demonstrated by amounts of experiments. Experimental results show that the mode collapse issue can be effectively alleviated by the introduced one-bit stroke encoding and few-shot semi-supervised training scheme, and that the proposed model outperforms the state-of-the-art models in fourteen font generation tasks in terms of four important evaluation metrics and the quality of generated characters. Besides CycleGAN, we also show that the proposed idea can be adapted to other existing models to improve their performance. The effectiveness of the proposed model for the zero-shot traditional Chinese font generation is also evaluated in this paper.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
对成对比较的排名聚集在选举,体育比赛,建议和信息检索中表现出了令人鼓舞的结果。但是,与众多有关计算和统计特征的研究工作相反,对这种算法的安全问题几乎没有关注。在巨额利润的推动下,潜在的对手具有强大的动力和动力来操纵排名清单。同时,文献中没有很好地研究等级聚集方法的内在脆弱性。为了充分了解可能的风险,我们专注于有目的的对手,他们希望通过修改本文中的成对数据来指定汇总结果。从动力学系统的角度来看,具有目标排名列表的攻击行为是属于对手和受害者组成的固定点。为了执行目标攻击,我们将对手和受害者之间的相互作用作为游戏理论框架,由两个连续的操作员组成,同时建立了NASH平衡。然后,构建了针对Hodgerank和RankCentrality的两个程序,以产生原始数据的修改。此外,我们证明,一旦对手掌握了完整的信息,受害者将产生目标排名列表。值得注意的是,所提出的方法允许对手只保留不完整的信息或不完美的反馈并执行有目的的攻击。一系列玩具模拟和几个现实世界数据实验证明了建议的目标攻击策略的有效性。这些实验结果表明,所提出的方法可以实现攻击者的目标,即扰动排名列表的领先候选人是对手指定的。
translated by 谷歌翻译
轻巧的人群计数模型,尤其是基于知识蒸馏(KD)的模型,由于其对计算效率和硬件需求的优越性,近年来吸引了人们的关注。但是,现有的基于KD的模型通常会遇到容量差距问题,从而导致学生网络的性能受到教师网络的限制。在本文中,我们通过在研究过程中引起了人类养生机制的审查机制,通过引入新的审查机制来解决这个问题。因此,提出的模型被称为ReviewKD。所提出的模型包括指导阶段和审查阶段,我们首先利用训练有素的重型教师网络将其潜在特征转移到指导阶段的轻量级学生网络中,然后在审核阶段中产生了精致的估计。密度图通过审查机制基于学习的功能。与最新模型相比,通过六个基准数据集的一组实验证明了评论KD的有效性。数值结果表明,ReviewKD的表现优于现有的轻量级模型用于人群计数,并且可以有效缓解容量差距问题,尤其是在教师网络之外的表现。除了轻巧的型号外,我们还表明,建议的审查机制可以用作插件模块,以进一步提高一种沉重的人群计数模型的性能,而无需修改神经网络体系结构并引入任何其他模型参数。
translated by 谷歌翻译
In the era of big data, it is desired to develop efficient machine learning algorithms to tackle massive data challenges such as storage bottleneck, algorithmic scalability, and interpretability. In this paper, we develop a novel efficient classification algorithm, called fast polynomial kernel classification (FPC), to conquer the scalability and storage challenges. Our main tools are a suitable selected feature mapping based on polynomial kernels and an alternating direction method of multipliers (ADMM) algorithm for a related non-smooth convex optimization problem. Fast learning rates as well as feasibility verifications including the efficiency of an ADMM solver with convergence guarantees and the selection of center points are established to justify theoretical behaviors of FPC. Our theoretical assertions are verified by a series of simulations and real data applications. Numerical results demonstrate that FPC significantly reduces the computational burden and storage memory of existing learning schemes such as support vector machines, Nystr\"{o}m and random feature methods, without sacrificing their generalization abilities much.
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
The utilization of large-scale distributed renewable energy promotes the development of the multi-microgrid (MMG), which raises the need of developing an effective energy management method to minimize economic costs and keep self energy-sufficiency. The multi-agent deep reinforcement learning (MADRL) has been widely used for the energy management problem because of its real-time scheduling ability. However, its training requires massive energy operation data of microgrids (MGs), while gathering these data from different MGs would threaten their privacy and data security. Therefore, this paper tackles this practical yet challenging issue by proposing a federated multi-agent deep reinforcement learning (F-MADRL) algorithm via the physics-informed reward. In this algorithm, the federated learning (FL) mechanism is introduced to train the F-MADRL algorithm thus ensures the privacy and the security of data. In addition, a decentralized MMG model is built, and the energy of each participated MG is managed by an agent, which aims to minimize economic costs and keep self energy-sufficiency according to the physics-informed reward. At first, MGs individually execute the self-training based on local energy operation data to train their local agent models. Then, these local models are periodically uploaded to a server and their parameters are aggregated to build a global agent, which will be broadcasted to MGs and replace their local agents. In this way, the experience of each MG agent can be shared and the energy operation data is not explicitly transmitted, thus protecting the privacy and ensuring data security. Finally, experiments are conducted on Oak Ridge national laboratory distributed energy control communication lab microgrid (ORNL-MG) test system, and the comparisons are carried out to verify the effectiveness of introducing the FL mechanism and the outperformance of our proposed F-MADRL.
translated by 谷歌翻译
This paper presents a safety-critical locomotion control framework for quadrupedal robots. Our goal is to enable quadrupedal robots to safely navigate in cluttered environments. To tackle this, we introduce exponential Discrete Control Barrier Functions (exponential DCBFs) with duality-based obstacle avoidance constraints into a Nonlinear Model Predictive Control (NMPC) with Whole-Body Control (WBC) framework for quadrupedal locomotion control. This enables us to use polytopes to describe the shapes of the robot and obstacles for collision avoidance while doing locomotion control of quadrupedal robots. Compared to most prior work, especially using CBFs, that utilize spherical and conservative approximation for obstacle avoidance, this work demonstrates a quadrupedal robot autonomously and safely navigating through very tight spaces in the real world. (Our open-source code is available at github.com/HybridRobotics/quadruped_nmpc_dcbf_duality, and the video is available at youtu.be/p1gSQjwXm1Q.)
translated by 谷歌翻译
Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment, but current assessment method only uses coronal projection image and cannot illustrate the 3D deformity and vertebra rotation. The vertebra detection is essential to reveal 3D spine information, but the detection task is challenging due to complex data and limited annotations. We propose VertMatch, a two-step framework to detect vertebral structures in 3D ultrasound volume by utilizing unlabeled data in semi-supervised manner. The first step is to detect the possible positions of structures on transverse slice globally, and then the local patches are cropped based on detected positions. The second step is to distinguish whether the patches contain real vertebral structures and screen the predicted positions from the first step. VertMatch develops three novel components for semi-supervised learning: for position detection in the first step, (1) anatomical prior is used to screen pseudo labels generated from confidence threshold method; (2) multi-slice consistency is used to utilize more unlabeled data by inputting multiple adjacent slices; (3) for patch identification in the second step, the categories are rebalanced in each batch to solve imbalance problem. Experimental results demonstrate that VertMatch can detect vertebra accurately in ultrasound volume and outperforms state-of-the-art methods. VertMatch is also validated in clinical application on forty ultrasound scans, and it can be a promising approach for 3D assessment of scoliosis.
translated by 谷歌翻译
Free-text rationales (FTRs) follow how humans communicate by explaining reasoning processes via natural language. A number of recent works have studied how to improve language model (LM) generalization by using FTRs to teach LMs the correct reasoning processes behind correct task outputs. These prior works aim to learn from FTRs by appending them to the LM input or target output, but this may introduce an input distribution shift or conflict with the task objective, respectively. We propose KNIFE, which distills FTR knowledge from an FTR-augmented teacher LM (takes both task input and FTR) to a student LM (takes only task input), which is used for inference. Crucially, the teacher LM's forward computation has a bottleneck stage in which all of its FTR states are masked out, which pushes knowledge from the FTR states into the task input/output states. Then, FTR knowledge is distilled to the student LM by training its task input/output states to align with the teacher LM's. On two question answering datasets, we show that KNIFE significantly outperforms existing FTR learning methods, in both fully-supervised and low-resource settings.
translated by 谷歌翻译