The utilization of large-scale distributed renewable energy promotes the development of the multi-microgrid (MMG), which raises the need of developing an effective energy management method to minimize economic costs and keep self energy-sufficiency. The multi-agent deep reinforcement learning (MADRL) has been widely used for the energy management problem because of its real-time scheduling ability. However, its training requires massive energy operation data of microgrids (MGs), while gathering these data from different MGs would threaten their privacy and data security. Therefore, this paper tackles this practical yet challenging issue by proposing a federated multi-agent deep reinforcement learning (F-MADRL) algorithm via the physics-informed reward. In this algorithm, the federated learning (FL) mechanism is introduced to train the F-MADRL algorithm thus ensures the privacy and the security of data. In addition, a decentralized MMG model is built, and the energy of each participated MG is managed by an agent, which aims to minimize economic costs and keep self energy-sufficiency according to the physics-informed reward. At first, MGs individually execute the self-training based on local energy operation data to train their local agent models. Then, these local models are periodically uploaded to a server and their parameters are aggregated to build a global agent, which will be broadcasted to MGs and replace their local agents. In this way, the experience of each MG agent can be shared and the energy operation data is not explicitly transmitted, thus protecting the privacy and ensuring data security. Finally, experiments are conducted on Oak Ridge national laboratory distributed energy control communication lab microgrid (ORNL-MG) test system, and the comparisons are carried out to verify the effectiveness of introducing the FL mechanism and the outperformance of our proposed F-MADRL.
translated by 谷歌翻译
As an efficient way to integrate multiple distributed energy resources and the user side, a microgrid is mainly faced with the problems of small-scale volatility, uncertainty, intermittency and demand-side uncertainty of DERs. The traditional microgrid has a single form and cannot meet the flexible energy dispatch between the complex demand side and the microgrid. In response to this problem, the overall environment of wind power, thermostatically controlled loads, energy storage systems, price-responsive loads and the main grid is proposed. Secondly, the centralized control of the microgrid operation is convenient for the control of the reactive power and voltage of the distributed power supply and the adjustment of the grid frequency. However, there is a problem in that the flexible loads aggregate and generate peaks during the electricity price valley. The existing research takes into account the power constraints of the microgrid and fails to ensure a sufficient supply of electric energy for a single flexible load. This paper considers the response priority of each unit component of TCLs and ESSs on the basis of the overall environment operation of the microgrid so as to ensure the power supply of the flexible load of the microgrid and save the power input cost to the greatest extent. Finally, the simulation optimization of the environment can be expressed as a Markov decision process process. It combines two stages of offline and online operations in the training process. The addition of multiple threads with the lack of historical data learning leads to low learning efficiency. The asynchronous advantage actor-critic with the experience replay pool memory library is added to solve the data correlation and nonstatic distribution problems during training.
translated by 谷歌翻译
智能能源网络提供了一种有效的手段,可容纳可变可再生能源(例如太阳能和风能)的高渗透率,这是能源生产深度脱碳的关键。但是,鉴于可再生能源以及能源需求的可变性,必须制定有效的控制和能源存储方案来管理可变的能源产生并实现所需的系统经济学和环境目标。在本文中,我们引入了由电池和氢能存储组成的混合储能系统,以处理与电价,可再生能源生产和消费有关的不确定性。我们旨在提高可再生能源利用率,并最大程度地减少能源成本和碳排放,同时确保网络内的能源可靠性和稳定性。为了实现这一目标,我们提出了一种多代理的深层确定性政策梯度方法,这是一种基于强化的基于强化学习的控制策略,可实时优化混合能源存储系统和能源需求的调度。提出的方法是无模型的,不需要明确的知识和智能能源网络环境的严格数学模型。基于现实世界数据的仿真结果表明:(i)混合储能系统和能源需求的集成和优化操作可将碳排放量减少78.69%,将成本节省的成本储蓄提高23.5%,可续订的能源利用率比13.2%以上。其他基线模型和(ii)所提出的算法优于最先进的自学习算法,例如Deep-Q网络。
translated by 谷歌翻译
我们考虑了需求侧能源管理的问题,每个家庭都配备了能够在线安排家用电器的智能电表。目的是最大程度地减少实时定价计划下的整体成本。尽管以前的作品引入了集中式方法,在该方法中,调度算法具有完全可观察的性能,但我们提出了将智能网格环境作为马尔可夫游戏的表述。每个家庭都是具有部分可观察性的去中心化代理,可以在现实环境中进行可扩展性和隐私保护。电网操作员产生的价格信号随能量需求而变化。我们提出了从代理商的角度来解决部分可观察性和环境的局部可观察性的扩展,以解决部分可观察性。该算法学习了一位集中批评者,该批评者协调分散的代理商的培训。因此,我们的方法使用集中学习,但分散执行。仿真结果表明,我们的在线深入强化学习方法可以纯粹基于瞬时观察和价格信号来降低所有消耗的总能量的峰值与平均值和所有家庭的电力。
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
Driven by the global decarbonization effort, the rapid integration of renewable energy into the conventional electricity grid presents new challenges and opportunities for the battery energy storage system (BESS) participating in the energy market. Energy arbitrage can be a significant source of revenue for the BESS due to the increasing price volatility in the spot market caused by the mismatch between renewable generation and electricity demand. In addition, the Frequency Control Ancillary Services (FCAS) markets established to stabilize the grid can offer higher returns for the BESS due to their capability to respond within milliseconds. Therefore, it is crucial for the BESS to carefully decide how much capacity to assign to each market to maximize the total profit under uncertain market conditions. This paper formulates the bidding problem of the BESS as a Markov Decision Process, which enables the BESS to participate in both the spot market and the FCAS market to maximize profit. Then, Proximal Policy Optimization, a model-free deep reinforcement learning algorithm, is employed to learn the optimal bidding strategy from the dynamic environment of the energy market under a continuous bidding scale. The proposed model is trained and validated using real-world historical data of the Australian National Electricity Market. The results demonstrate that our developed joint bidding strategy in both markets is significantly profitable compared to individual markets.
translated by 谷歌翻译
Multi-uncertainties from power sources and loads have brought significant challenges to the stable demand supply of various resources at islands. To address these challenges, a comprehensive scheduling framework is proposed by introducing a model-free deep reinforcement learning (DRL) approach based on modeling an island integrated energy system (IES). In response to the shortage of freshwater on islands, in addition to the introduction of seawater desalination systems, a transmission structure of "hydrothermal simultaneous transmission" (HST) is proposed. The essence of the IES scheduling problem is the optimal combination of each unit's output, which is a typical timing control problem and conforms to the Markov decision-making solution framework of deep reinforcement learning. Deep reinforcement learning adapts to various changes and timely adjusts strategies through the interaction of agents and the environment, avoiding complicated modeling and prediction of multi-uncertainties. The simulation results show that the proposed scheduling framework properly handles multi-uncertainties from power sources and loads, achieves a stable demand supply for various resources, and has better performance than other real-time scheduling methods, especially in terms of computational efficiency. In addition, the HST model constitutes an active exploration to improve the utilization efficiency of island freshwater.
translated by 谷歌翻译
Microgrids(MGS)是未来的缩小能量系统的重要参与者,其中许多智能的东西(物联网)设备在智能电网中的能量管理中相互作用。虽然MG能源管理有许多作品,但大多数研究都假设了一个完美的通信环境,其中不考虑通信故障。在本文中,我们将MG视为具有IOT设备的多智能传播环境,其中AI代理与其同行交换信息以进行协作。但是,由于通信故障或分组丢失,协作信息可能会丢失。这些事件可能会影响整个MG的操作。为此,我们提出了一种多种子体贝叶斯深增强学习(BA-DRL)方法,用于MG能量管理下的通信故障。我们首先定义多个代理部分观察到的马尔可夫决策过程(MA-POMDP)来描述在通信失败下的代理商,其中每个代理人可以更新其对同龄人的行动的信念。然后,我们在BA-DRL中应用用于Q值估计的双深度Q学习(DDQN)架构,并提出了基于信念的相关性平衡,用于多助剂BA-DRL的关节动作选择。最后,仿真结果表明,BA-DRL对供电不确定度和通信故障不确定性强大。 BA-DRL的奖励比NASH Deep Q-Learning(NASH-DQN)和乘法器(ADMM)的交替方向方法分别在1%的通信失效概率下进行4.1%和10.3%。
translated by 谷歌翻译
Global power systems are increasingly reliant on wind energy as a mitigation strategy for climate change. However, the variability of wind energy causes system reliability to erode, resulting in the wind being curtailed and, ultimately, leading to substantial economic losses for wind farm owners. Wind curtailment can be reduced using battery energy storage systems (BESS) that serve as onsite backup sources. Yet, this auxiliary role may significantly hamper the BESS's capacity to generate revenues from the electricity market, particularly in conducting energy arbitrage in the Spot market and providing frequency control ancillary services (FCAS) in the FCAS markets. Ideal BESS scheduling should effectively balance the BESS's role in absorbing onsite wind curtailment and trading in the electricity market, but it is difficult in practice because of the underlying coordination complexity and the stochastic nature of energy prices and wind generation. In this study, we investigate the bidding strategy of a wind-battery system co-located and participating simultaneously in both the Spot and Regulation FCAS markets. We propose a deep reinforcement learning (DRL)-based approach that decouples the market participation of the wind-battery system into two related Markov decision processes for each facility, enabling the BESS to absorb onsite wind curtailment while simultaneously bidding in the wholesale Spot and FCAS markets to maximize overall operational revenues. Using realistic wind farm data, we validated the coordinated bidding strategy for the wind-battery system and find that our strategy generates significantly higher revenue and responds better to wind curtailment compared to an optimization-based benchmark. Our results show that joint-market bidding can significantly improve the financial performance of wind-battery systems compared to individual market participation.
translated by 谷歌翻译
如今,微电网(MG)具有可再生能源的应用越来越广泛,这对动态能量管理产生了强烈的需求。在本文中,深入强化学习(DRL)用于学习最佳政策,以在孤立的毫克中制定联合能源调度(ED)和单位承诺(UC)决策,目的是降低前提的总发电成本确保供求余额。为了克服因联合ED和UC引起的离散连续混合动作空间的挑战,我们提出了DRL算法,即混合动作有限的Horizo​​n DDPG(HAFH-DDPG),该算法无缝地集成了两个经典的DRL算法,即。 ,基于有限的horizo​​n动态编程(DP)框架,深Q网络(DQN)和深层确定性策略梯度(DDPG)。此外,提出了柴油发电机(DG)选择策略,以支持简化的动作空间,以降低该算法的计算复杂性。最后,通过与现实世界数据集的实验相比,通过与多种基线算法进行比较来验证我们所提出的算法的有效性。
translated by 谷歌翻译
在本文中,多种子体增强学习用于控制混合能量存储系统,通过最大化可再生能源和交易的价值来降低微电网的能量成本。该代理商必须学习在波动需求,动态批发能源价格和不可预测的可再生能源中,控制三种不同类型的能量存储系统。考虑了两种案例研究:首先看能量存储系统如何在动态定价下更好地整合可再生能源发电,第二种与这些同一代理商如何与聚合剂一起使用,以向自私外部微电网销售能量的能量减少自己的能源票据。这项工作发现,具有分散执行的多代理深度确定性政策梯度的集中学习及其最先进的变体允许多种代理方法显着地比来自单个全局代理的控制更好。还发现,在多种子体方法中使用单独的奖励功能比使用单个控制剂更好。还发现能够与其他微电网交易,而不是卖回实用电网,也发现大大增加了网格的储蓄。
translated by 谷歌翻译
本文解决了当参与需求响应(DR)时优化电动汽车(EV)的充电/排放时间表的问题。由于电动汽车的剩余能量,到达和出发时间以及未来的电价中存在不确定性,因此很难做出充电决定以最大程度地减少充电成本,同时保证电动汽车的电池最先进(SOC)在内某些范围。为了解决这一难题,本文将EV充电调度问题制定为Markov决策过程(CMDP)。通过协同结合增强的Lagrangian方法和软演员评论家算法,本文提出了一种新型安全的非政策钢筋学习方法(RL)方法来解决CMDP。通过Lagrangian值函数以策略梯度方式更新Actor网络。采用双重危机网络来同步估计动作值函数,以避免高估偏差。所提出的算法不需要强烈的凸度保证,可以保证被检查的问题,并且是有效的样本。现实世界中电价的全面数值实验表明,我们提出的算法可以实现高解决方案最佳性和约束依从性。
translated by 谷歌翻译
为了通过使用可再生能源来取代化石燃料,间歇性风能和光伏(PV)功率的资源不平衡是点对点(P2P)功率交易的关键问题。为了解决这个问题,本文介绍了增强学习(RL)技术。对于RL,图形卷积网络(GCN)和双向长期记忆(BI-LSTM)网络由基于合作游戏理论的纳米簇之间的P2P功率交易共同应用于P2P功率交易。柔性且可靠的DC纳米醇适合整合可再生能源以进行分配系统。每个局部纳米粒子群都采用了生产者的位置,同时着重于功率生产和消费。对于纳米级簇的电源管理,使用物联网(IoT)技术将多目标优化应用于每个本地纳米群集群。考虑到风和光伏发电的间歇性特征,进行电动汽车(EV)的充电/排放。 RL算法,例如深Q学习网络(DQN),深度复发Q学习网络(DRQN),BI-DRQN,近端策略优化(PPO),GCN-DQN,GCN-DQN,GCN-DRQN,GCN-DRQN,GCN-BI-DRQN和GCN-PPO用于模拟。因此,合作P2P电力交易系统利用使用时间(TOU)基于关税的电力成本和系统边际价格(SMP)最大化利润,并最大程度地减少电网功耗的量。用P2P电源交易的纳米簇簇的电源管理实时模拟了分配测试馈线,并提议的GCN-PPO技术将纳米糖簇的电量降低了36.7%。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
预计下一代(NEVERG)网络将支持苛刻的触觉互联网应用,例如增强现实和连接的自动车辆。虽然最近的创新带来了更大的联系能力的承诺,它们对环境的敏感性以及不稳定的性能无视基于传统的基于模型的控制理由。零触摸数据驱动的方法可以提高网络适应当前操作条件的能力。诸如强化学习(RL)算法等工具可以仅基于观察历史来构建最佳控制策略。具体而言,使用深神经网络(DNN)作为预测器的深RL(DRL)已经被示出,即使在复杂的环境和高维输入中也能够实现良好的性能。但是,DRL模型的培训需要大量数据,这可能会限制其对潜在环境的不断发展统计数据的适应性。此外,无线网络是固有的分布式系统,其中集中式DRL方法需要过多的数据交换,而完全分布的方法可能导致较慢的收敛速率和性能下降。在本文中,为了解决这些挑战,我们向DRL提出了联合学习(FL)方法,我们指的是联邦DRL(F-DRL),其中基站(BS)通过仅共享模型的重量协作培训嵌入式DNN而不是训练数据。我们评估了两个不同版本的F-DRL,价值和策略,并显示出与分布式和集中式DRL相比实现的卓越性能。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
在本文中,我们研究了多服务器边缘计算中基于区块链的联合学习(BFL)的新延迟优化问题。在此系统模型中,分布式移动设备(MDS)与一组Edge服务器(ESS)通信,以同时处理机器学习(ML)模型培训和阻止开采。为了协助ML模型培训用于资源受限的MD,我们制定了一种卸载策略,使MD可以将其数据传输到相关的ESS之一。然后,我们基于共识机制在边缘层上提出了一个新的分散的ML模型聚合解决方案,以通过基于对等(P2P)基于基于的区块链通信构建全局ML模型。区块链在MDS和ESS之间建立信任,以促进可靠的ML模型共享和合作共识形成,并能够快速消除由中毒攻击引起的操纵模型。我们将延迟感知的BFL作为优化,旨在通过联合考虑数据卸载决策,MDS的传输功率,MDS数据卸载,MDS的计算分配和哈希功率分配来最大程度地减少系统延迟。鉴于离散卸载和连续分配变量的混合作用空间,我们提出了一种具有参数化优势演员评论家算法的新型深度强化学习方案。从理论上讲,我们根据聚合延迟,迷你批量大小和P2P通信回合的数量来表征BFL的收敛属性。我们的数值评估证明了我们所提出的方案优于基线,从模型训练效率,收敛速度,系统潜伏期和对模型中毒攻击的鲁棒性方面。
translated by 谷歌翻译
Technology advancements in wireless communications and high-performance Extended Reality (XR) have empowered the developments of the Metaverse. The demand for Metaverse applications and hence, real-time digital twinning of real-world scenes is increasing. Nevertheless, the replication of 2D physical world images into 3D virtual world scenes is computationally intensive and requires computation offloading. The disparity in transmitted scene dimension (2D as opposed to 3D) leads to asymmetric data sizes in uplink (UL) and downlink (DL). To ensure the reliability and low latency of the system, we consider an asynchronous joint UL-DL scenario where in the UL stage, the smaller data size of the physical world scenes captured by multiple extended reality users (XUs) will be uploaded to the Metaverse Console (MC) to be construed and rendered. In the DL stage, the larger-size 3D virtual world scenes need to be transmitted back to the XUs. The decisions pertaining to computation offloading and channel assignment are optimized in the UL stage, and the MC will optimize power allocation for users assigned with a channel in the UL transmission stage. Some problems arise therefrom: (i) interactive multi-process chain, specifically Asynchronous Markov Decision Process (AMDP), (ii) joint optimization in multiple processes, and (iii) high-dimensional objective functions, or hybrid reward scenarios. To ensure the reliability and low latency of the system, we design a novel multi-agent reinforcement learning algorithm structure, namely Asynchronous Actors Hybrid Critic (AAHC). Extensive experiments demonstrate that compared to proposed baselines, AAHC obtains better solutions with preferable training time.
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
Compared with model-based control and optimization methods, reinforcement learning (RL) provides a data-driven, learning-based framework to formulate and solve sequential decision-making problems. The RL framework has become promising due to largely improved data availability and computing power in the aviation industry. Many aviation-based applications can be formulated or treated as sequential decision-making problems. Some of them are offline planning problems, while others need to be solved online and are safety-critical. In this survey paper, we first describe standard RL formulations and solutions. Then we survey the landscape of existing RL-based applications in aviation. Finally, we summarize the paper, identify the technical gaps, and suggest future directions of RL research in aviation.
translated by 谷歌翻译