已经证明对比学习是有效的,可以减轻医学图像分析中昂贵注释的高需求,这可以捕获图像中的一般图案,并且自然用作各种任务的初始特征提取器。最近的作品主要基于案例明智的歧视,并学习全球歧视特征;然而,他们不能帮助临床医生处理主要由局部相似性分类的微小解剖结构,病变和组织。在这项工作中,我们提出了一般无人监督的框架,以了解来自医学图像的局部歧视特征,以进行模型的初始化。在此事实之后,相同体区域的图像应该共享类似的解剖结构,并且相同结构的像素应该具有类似的语义模式,我们设计神经网络以构建具有相似上下文的像素的局部判别嵌入空间是聚类和异种像素的分散。该网络主要包含两个分支:嵌入分支以生成像素 - WISE Embeddings,以及聚类分支以将相同结构的像素聚集在一起并生成分段。提出了一种区域辨别损失以在互利模式中优化这两个分支,使得通过聚类分支集群聚集在一起的像素共享类似的嵌入式矢量,并且训练模型可以测量像素方面的相似性。当转移到下游任务时,基于我们框架的学习特征提取器显示出更好的泛化能力,这优于来自广泛的最先进的方法,并在彩色眼底和胸部X光中的所有12个下游任务中获胜11。此外,我们利用像素 - 方面的嵌入来测量区域相似度,并提出一种形状引导的跨模块分割框架和中心敏感的单次地标定位算法。
translated by 谷歌翻译
产品空间的嵌入方法是用于复杂数据结构的低失真和低维表示的强大技术。在这里,我们解决了Euclidean,球形和双曲线产品的产品空间形式的线性分类新问题。首先,我们描述了使用测地仪和黎曼·歧木的线性分类器的新型制剂,其使用大气和黎曼指标在向量空间中推广直线和内部产品。其次,我们证明了$ D $ -dimential空间形式的线性分类器的任何曲率具有相同的表现力,即,它们可以粉碎恰好$ d + 1 $积分。第三,我们在产品空间形式中正式化线性分类器,描述了第一个已知的Perceptron和支持这些空间的传染媒介机分类器,并为感知者建立严格的融合结果。此外,我们证明了vapnik-chervonenkis尺寸在尺寸的产品空间形式的线性分类器的维度为\ {至少} $ d + 1 $。我们支持我们的理论发现,在多个数据集上模拟,包括合成数据,图像数据和单细胞RNA测序(SCRNA-SEQ)数据。结果表明,与相同维度的欧几里德空间中的欧几里德空间中,SCRNA-SEQ数据的低维产品空间形式的分类为SCRNA-SEQ数据提供了$ \ SIM15 \%$的性能改进。
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译
The traditional statistical inference is static, in the sense that the estimate of the quantity of interest does not affect the future evolution of the quantity. In some sequential estimation problems however, the future values of the quantity to be estimated depend on the estimate of its current value. This type of estimation problems has been formulated as the dynamic inference problem. In this work, we formulate the Bayesian learning problem for dynamic inference, where the unknown quantity-generation model is assumed to be randomly drawn according to a random model parameter. We derive the optimal Bayesian learning rules, both offline and online, to minimize the inference loss. Moreover, learning for dynamic inference can serve as a meta problem, such that all familiar machine learning problems, including supervised learning, imitation learning and reinforcement learning, can be cast as its special cases or variants. Gaining a good understanding of this unifying meta problem thus sheds light on a broad spectrum of machine learning problems as well.
translated by 谷歌翻译
Most Graph Neural Networks follow the message-passing paradigm, assuming the observed structure depicts the ground-truth node relationships. However, this fundamental assumption cannot always be satisfied, as real-world graphs are always incomplete, noisy, or redundant. How to reveal the inherent graph structure in a unified way remains under-explored. We proposed PRI-GSL, a Graph Structure Learning framework guided by the Principle of Relevant Information, providing a simple and unified framework for identifying the self-organization and revealing the hidden structure. PRI-GSL learns a structure that contains the most relevant yet least redundant information quantified by von Neumann entropy and Quantum Jensen-Shannon divergence. PRI-GSL incorporates the evolution of quantum continuous walk with graph wavelets to encode node structural roles, showing in which way the nodes interplay and self-organize with the graph structure. Extensive experiments demonstrate the superior effectiveness and robustness of PRI-GSL.
translated by 谷歌翻译
Face forgery detection plays an important role in personal privacy and social security. With the development of adversarial generative models, high-quality forgery images become more and more indistinguishable from real to humans. Existing methods always regard as forgery detection task as the common binary or multi-label classification, and ignore exploring diverse multi-modality forgery image types, e.g. visible light spectrum and near-infrared scenarios. In this paper, we propose a novel Hierarchical Forgery Classifier for Multi-modality Face Forgery Detection (HFC-MFFD), which could effectively learn robust patches-based hybrid domain representation to enhance forgery authentication in multiple-modality scenarios. The local spatial hybrid domain feature module is designed to explore strong discriminative forgery clues both in the image and frequency domain in local distinct face regions. Furthermore, the specific hierarchical face forgery classifier is proposed to alleviate the class imbalance problem and further boost detection performance. Experimental results on representative multi-modality face forgery datasets demonstrate the superior performance of the proposed HFC-MFFD compared with state-of-the-art algorithms. The source code and models are publicly available at https://github.com/EdWhites/HFC-MFFD.
translated by 谷歌翻译