产品空间的嵌入方法是用于复杂数据结构的低失真和低维表示的强大技术。在这里,我们解决了Euclidean,球形和双曲线产品的产品空间形式的线性分类新问题。首先,我们描述了使用测地仪和黎曼·歧木的线性分类器的新型制剂,其使用大气和黎曼指标在向量空间中推广直线和内部产品。其次,我们证明了$ D $ -dimential空间形式的线性分类器的任何曲率具有相同的表现力,即,它们可以粉碎恰好$ d + 1 $积分。第三,我们在产品空间形式中正式化线性分类器,描述了第一个已知的Perceptron和支持这些空间的传染媒介机分类器,并为感知者建立严格的融合结果。此外,我们证明了vapnik-chervonenkis尺寸在尺寸的产品空间形式的线性分类器的维度为\ {至少} $ d + 1 $。我们支持我们的理论发现,在多个数据集上模拟,包括合成数据,图像数据和单细胞RNA测序(SCRNA-SEQ)数据。结果表明,与相同维度的欧几里德空间中的欧几里德空间中,SCRNA-SEQ数据的低维产品空间形式的分类为SCRNA-SEQ数据提供了$ \ SIM15 \%$的性能改进。
translated by 谷歌翻译
我们使用运输公制(Delon和Desolneux 2020)中的单变量高斯混合物中的任意度量空间$ \ MATHCAL {X} $研究数据表示。我们得出了由称为\ emph {Probabilistic Transfersers}的小神经网络实现的特征图的保证。我们的保证是记忆类型:我们证明了深度约为$ n \ log(n)$的概率变压器和大约$ n^2 $ can bi-h \'{o} lder嵌入任何$ n $ - 点数据集从低度量失真的$ \ Mathcal {x} $,从而避免了维数的诅咒。我们进一步得出了概率的bi-lipschitz保证,可以兑换失真量和随机选择的点与该失真的随机选择点的可能性。如果$ \ MATHCAL {X} $的几何形状足够规律,那么我们可以为数据集中的所有点获得更强的Bi-Lipschitz保证。作为应用程序,我们从Riemannian歧管,指标和某些类型的数据集中获得了神经嵌入保证金组合图。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
A common approach to modeling networks assigns each node to a position on a low-dimensional manifold where distance is inversely proportional to connection likelihood. More positive manifold curvature encourages more and tighter communities; negative curvature induces repulsion. We consistently estimate manifold type, dimension, and curvature from simply connected, complete Riemannian manifolds of constant curvature. We represent the graph as a noisy distance matrix based on the ties between cliques, then develop hypothesis tests to determine whether the observed distances could plausibly be embedded isometrically in each of the candidate geometries. We apply our approach to data-sets from economics and neuroscience.
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
这篇综述的目的是将读者介绍到图表内,以将其应用于化学信息学中的分类问题。图内核是使我们能够推断分子的化学特性的功能,可以帮助您完成诸如寻找适合药物设计的化合物等任务。内核方法的使用只是一种特殊的两种方式量化了图之间的相似性。我们将讨论限制在这种方法上,尽管近年来已经出现了流行的替代方法,但最著名的是图形神经网络。
translated by 谷歌翻译
众所周知,现代神经网络容易受到对抗例子的影响。为了减轻这个问题,已经提出了一系列强大的学习算法。但是,尽管通过某些方法可以通过某些方法接近稳定的训练误差,但所有现有的算法都会导致较高的鲁棒概括误差。在本文中,我们从深层神经网络的表达能力的角度提供了对这种令人困惑的现象的理论理解。具体而言,对于二进制分类数据,我们表明,对于Relu网络,虽然轻度的过度参数足以满足较高的鲁棒训练精度,但存在持续的稳健概括差距,除非神经网络的大小是指数的,却是指数的。数据维度$ d $。即使数据是线性可分离的,这意味着要实现低清洁概括错误很容易,我们仍然可以证明$ \ exp({\ omega}(d))$下限可用于鲁棒概括。通常,只要它们的VC维度最多是参数数量,我们的指数下限也适用于各种神经网络家族和其他功能类别。此外,我们为网络大小建立了$ \ exp({\ mathcal {o}}(k))$的改进的上限,当数据放在具有内在尺寸$ k $的歧管上时,以实现低鲁棒的概括错误($) k \ ll d $)。尽管如此,我们也有一个下限,相对于$ k $成倍增长 - 维度的诅咒是不可避免的。通过证明网络大小之间的指数分离以实现较低的鲁棒训练和泛化错误,我们的结果表明,鲁棒概括的硬度可能源于实用模型的表现力。
translated by 谷歌翻译
有限维概率单纯x中的聚类分类分布是处理归一化直方图的许多应用中的基本任务。传统上,概率单位的差分几何结构已经通过(i)将Riemannian公制矩阵设定为分类分布的Fisher信息矩阵,或(ii)定义由平滑异化性引起的二元信息 - 几何结构衡量标准,kullback-leibler发散。在这项工作中,我们介绍了群集任务一种新颖的计算型友好框架,用于在几何上建模概率单纯x:{\ em hilbert simplex几何}。在Hilbert Simplex几何形状中,距离是不可分离的Hilbert公制距离,其满足与多光镜边界描述的距离水平集功能的信息单调性的特性。我们表明,Aitchison和Hilbert Simplex的距离分别是关于$ \ ell_2 $和变化规范的标准化对数表示的距离。我们讨论了这些不同的统计建模的利弊,并通过基于基于中心的$ k $ -means和$ k $ -center聚类的基准这些不同的几何形状。此外,由于可以在欧几里德空间的任何有界凸形子集上定义规范希尔伯特距离,因此我们还考虑了与FR \“Obenius和Log-Det分歧相比的相关矩阵的椭圆形的几何形状并研究其聚类性能。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
在本文中,我们通过推断在歧管上的迭代来提出一种简单的加速度方案,用于利曼梯度方法。我们显示何时从Riemannian梯度下降法生成迭代元素,加速方案是渐近地达到最佳收敛速率,并且比最近提出的Riemannian Nesterov加速梯度方法在计算上更有利。我们的实验验证了新型加速策略的实际好处。
translated by 谷歌翻译
In this work we study statistical properties of graph-based algorithms for multi-manifold clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set when this one is assumed to be obtained by sampling a distribution on a union of manifolds $\mathcal{M} = \mathcal{M}_1 \cup\dots \cup \mathcal{M}_N$ that may intersect with each other and that may have different dimensions. We investigate sufficient conditions that similarity graphs on data sets must satisfy in order for their corresponding graph Laplacians to capture the right geometric information to solve the MMC problem. Precisely, we provide high probability error bounds for the spectral approximation of a tensorized Laplacian on $\mathcal{M}$ with a suitable graph Laplacian built from the observations; the recovered tensorized Laplacian contains all geometric information of all the individual underlying manifolds. We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints, satisfying these sufficient conditions. We contrast our family of graphs with other constructions in the literature based on the alignment of tangent planes. Extensive numerical experiments expand the insights that our theory provides on the MMC problem.
translated by 谷歌翻译
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including support vector machines and regularized least squares can be obtained as special cases. We use properties of reproducing kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graph-based approaches) we obtain a natural out-of-sample extension to novel examples and so are able to handle both transductive and truly semi-supervised settings. We present experimental evidence suggesting that our semi-supervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.
translated by 谷歌翻译
我们研究无限制的黎曼优化的免投影方法。特别是,我们提出了黎曼弗兰克 - 沃尔夫(RFW)方法。我们将RFW的非渐近收敛率分析为最佳(高音)凸起问题,以及非凸起目标的临界点。我们还提出了一种实用的设置,其中RFW可以获得线性收敛速度。作为一个具体的例子,我们将RFW专用于正定矩阵的歧管,并将其应用于两个任务:(i)计算矩阵几何平均值(riemannian质心); (ii)计算Bures-Wasserstein重心。这两个任务都涉及大量凸间间隔约束,为此,我们表明RFW要求的Riemannian“线性”Oracle承认了闭合形式的解决方案;该结果可能是独立的兴趣。我们进一步专门从事RFW到特殊正交组,并表明这里也可以以封闭形式解决riemannian“线性”甲骨文。在这里,我们描述了数据矩阵同步的应用程序(促使问题)。我们补充了我们的理论结果,并对RFW对最先进的riemananian优化方法进行了实证比较,并观察到RFW竞争性地对计算黎曼心质的任务进行竞争性。
translated by 谷歌翻译
散射变换是一种基于小波的多层转换,最初是作为卷积神经网络(CNN)的模型引入的,它在我们对这些网络稳定性和不变性属性的理解中发挥了基础作用。随后,人们普遍兴趣将CNN的成功扩展到具有非欧盟结构的数据集,例如图形和歧管,从而导致了几何深度学习的新兴领域。为了提高我们对这个新领域中使用的体系结构的理解,几篇论文提出了对非欧几里得数据结构(如无方向的图形和紧凑的Riemannian歧管)的散射转换的概括。在本文中,我们介绍了一个通用的统一模型,用于测量空间上的几何散射。我们提出的框架包括以前的几何散射作品作为特殊情况,但也适用于更通用的设置,例如有向图,签名图和带边界的歧管。我们提出了一个新标准,该标准可以识别哪些有用表示应该不变的组,并表明该标准足以确保散射变换具有理想的稳定性和不变性属性。此外,我们考虑从随机采样未知歧管获得的有限度量空间。我们提出了两种构造数据驱动图的方法,在该图上相关的图形散射转换近似于基础歧管上的散射变换。此外,我们使用基于扩散图的方法来证明这些近似值之一的收敛速率的定量估计值,因为样品点的数量趋向于无穷大。最后,我们在球形图像,有向图和高维单细胞数据上展示了方法的实用性。
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
从最佳运输到稳健的维度降低,可以将大量的机器学习应用程序放入Riemannian歧管上的Min-Max优化问题中。尽管在欧几里得的环境中已经分析了许多最小的最大算法,但事实证明,将这些结果转化为Riemannian案例已被证明是难以捉摸的。张等。 [2022]最近表明,测量凸凹入的凹入问题总是容纳鞍点解决方案。受此结果的启发,我们研究了Riemannian和最佳欧几里得空间凸入concove算法之间的性能差距。我们在负面的情况下回答了这个问题,证明Riemannian校正的外部(RCEG)方法在地球上强烈convex-concove案例中以线性速率实现了最后近期收敛,与欧几里得结果匹配。我们的结果还扩展到随机或非平滑案例,在这种情况下,RCEG和Riemanian梯度上升下降(RGDA)达到了近乎最佳的收敛速率,直到因歧管的曲率而定为因素。
translated by 谷歌翻译
支持向量机(SVM)是一种算法,该算法找到了超平面,最佳地将标记的数据点以$ \ mathbb {r} ^ n $分为正面和负类。该分离超平面裕度上的数据点称为支持向量。我们将支持向量的可能配置连接到Radon的定理,这提供了一组点可以分为两个类(正负)的保证,其凸壳相交。如果将正和负支持向量的凸壳投射到分离超平面上,则仅在超平面是最佳的,则投影在至少一个点中相交。此外,通过特定类型的一般位置,我们表明(a)支撑载体的投影凸船体在恰好一个点中相交,(b)支撑载体在扰动下稳定,(c)最多有$ n + 1 $支持向量,(d)每一个高达$ n + 1 $的支持向量是可能的。最后,我们执行研究预期的支持向量数及其配置的计算机模拟,用于随机生成的数据。我们观察到,随着该类型的随机生成的数据增加的距离增加,具有两个支持向量的配置成为最可能的配置。
translated by 谷歌翻译
了解生物和人造网络的运作仍然是一个艰难而重要的挑战。为了确定一般原则,研究人员越来越有兴趣测量培训的大量网络,或者在培训或生物学地适应类似的任务。现在需要一种标准化的分析工具来确定网络级协变量 - 例如架构,解剖脑区和模型生物 - 影响神经表示(隐藏层激活)。在这里,我们通过定义量化代表性异化的广泛的公制空间,为这些分析提供严格的基础。使用本框架,我们根据规范相关分析修改现有的代表性相似度量,以满足三角形不等式,制定致扫描层中的感应偏差的新型度量,并识别使网络表示能够结合到基本上的近似的欧几里德嵌入物。货架机学习方法。我们展示了来自生物学(Allen Institute脑观测所)和深度学习(NAS-BENCH-101)的大规模数据集的这些方法。在这样做时,我们识别在解剖特征和模型性能方面可解释的神经表现之间的关系。
translated by 谷歌翻译