强化学习中的固有问题是应对不确定要采取的行动(或状态价值)的政策。模型不确定性,更正式地称为认知不确定性,是指超出采样噪声的模型的预期预测误差。在本文中,我们提出了Q值函数中认知不确定性估计的度量,我们将其称为路线上的认知不确定性。我们进一步开发了一种计算其近似上限的方法,我们称之为f值。我们通过实验将后者应用于深Q-Networks(DQN),并表明增强学习中的不确定性估计是学习进步的有用指标。然后,我们提出了一种新的方法,通过从现有(以前学过的或硬编码)的甲骨文政策中学习不确定性的同时,旨在避免在训练过程中避免非生产性的随机操作,从而提高参与者批评算法的样本效率。我们认为这位评论家的信心指导了探索(CCGE)。我们使用我们的F-Value指标在软演奏者(SAC)上实施CCGE,我们将其应用于少数流行的健身环境,并表明它比有限的背景下的香草囊获得了更好的样本效率和全部情节奖励。
translated by 谷歌翻译
We present 2-dimensional turbulent electric field calculations via physics-informed deep learning consistent with (i) drift-reduced Braginskii theory under the framework of an axisymmetric fusion plasma with purely toroidal field and (ii) experimental estimates of the fluctuating electron density and temperature on open field lines obtained from analysis of gas puff imaging of a discharge on the Alcator C-Mod tokamak. The inclusion of effects from the locally puffed atomic helium on particle and energy sources within the reduced plasma turbulence model are found to strengthen correlations between the electric field and electron pressure. The neutrals are also directly associated with broadening the distribution of turbulent field amplitudes and increasing ${\bf E \times B}$ shearing rates. This demonstrates a novel approach in plasma experiments by solving for nonlinear dynamics consistent with partial differential equations and data without encoding explicit boundary nor initial conditions.
translated by 谷歌翻译
湍流的分析是融合等离子体物理学中的重要面积。目前的理论模型基于某些等离子体密度结构的演变量化湍流程度,称为Blob。在这项工作中,我们通过在合成数据上训练掩模R-CNN模型和合成和实际数据测试的掩模R-CNN模型,跟踪这些BLOB在高频视频数据中的形状和位置。因此,我们的模型有效地跟踪了合成和真实实验GPI数据的BLOB结构,显示其前景作为估计与Tokamak等离子体的边缘湍流相关的BloB统计的强大工具。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Extracting complex structures from grid-based data is a common key step in automated medical image analysis. The conventional solution to recovering tree-structured geometries typically involves computing the minimal cost path through intermediate representations derived from segmentation masks. However, this methodology has significant limitations in the context of projective imaging of tree-structured 3D anatomical data such as coronary arteries, since there are often overlapping branches in the 2D projection. In this work, we propose a novel approach to predicting tree connectivity structure which reformulates the task as an optimization problem over individual steps of a recursive process. We design and train a two-stage model which leverages the UNet and Transformer architectures and introduces an image-based prompting technique. Our proposed method achieves compelling results on a pair of synthetic datasets, and outperforms a shortest-path baseline.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Grasping is an incredible ability of animals using their arms and limbs in their daily life. The human hand is an especially astonishing multi-fingered tool for precise grasping, which helped humans to develop the modern world. The implementation of the human grasp to virtual reality and telerobotics is always interesting and challenging at the same time. In this work, authors surveyed, studied, and analyzed the human hand-grasping behavior for the possibilities of haptic grasping in the virtual and remote environment. This work is focused on the motion and force analysis of fingers in human hand grasping scenarios and the paper describes the transition of the human hand grasping towards a tripod haptic grasp model for effective interaction in virtual reality.
translated by 谷歌翻译
Multivariate time series forecasting with hierarchical structure is pervasive in real-world applications, demanding not only predicting each level of the hierarchy, but also reconciling all forecasts to ensure coherency, i.e., the forecasts should satisfy the hierarchical aggregation constraints. Moreover, the disparities of statistical characteristics between levels can be huge, worsened by non-Gaussian distributions and non-linear correlations. To this extent, we propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation, to represent complex data distribution while simultaneously reconciling the forecasts to ensure coherency. Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step. In addition, by harnessing the power of deep model, we do not rely on any assumption such as unbiased estimates or Gaussian distribution. Our evaluation experiments are conducted on four real-world hierarchical datasets from different industrial domains (three public ones and a dataset from the application servers of Alipay's data center) and the preliminary results demonstrate efficacy of our proposed method.
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译