Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.
translated by 谷歌翻译
While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple, new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms several baselines and concurrent works, regarding both qualitative and quantitative evaluations, while being memory and computationally efficient.
translated by 谷歌翻译
We introduce a new method for diverse foreground generation with explicit control over various factors. Existing image inpainting based foreground generation methods often struggle to generate diverse results and rarely allow users to explicitly control specific factors of variation (e.g., varying the facial identity or expression for face inpainting results). We leverage contrastive learning with latent codes to generate diverse foreground results for the same masked input. Specifically, we define two sets of latent codes, where one controls a pre-defined factor (``known''), and the other controls the remaining factors (``unknown''). The sampled latent codes from the two sets jointly bi-modulate the convolution kernels to guide the generator to synthesize diverse results. Experiments demonstrate the superiority of our method over state-of-the-arts in result diversity and generation controllability.
translated by 谷歌翻译
我们提出了快速的文本2stylegan,这是一种自然语言界面,可适应预先训练的甘体,以实现文本引导的人脸合成。利用对比性语言图像预训练(剪辑)的最新进展,在培训过程中不需要文本数据。Fast Text2Stylegan被配制为条件变异自动编码器(CVAE),可在测试时为生成的图像提供额外的控制和多样性。我们的模型在遇到新的文本提示时不需要重新训练或微调剂或剪辑。与先前的工作相反,我们不依赖于测试时间的优化,这使我们的方法数量级比先前的工作快。从经验上讲,在FFHQ数据集上,我们的方法提供了与先前的工作相比,自然语言描述中具有不同详细程度的自然语言描述中的图像。
translated by 谷歌翻译
最近,Deep Models已经建立了SOTA性能,用于低分辨率图像介绍,但它们缺乏与现代相机(如4K或更多相关的现代相机)以及大孔相关的分辨率的保真度。我们为4K及以上代表现代传感器的照片贡献了一个介绍的基准数据集。我们展示了一个新颖的框架,结合了深度学习和传统方法。我们使用现有的深入介质模型喇嘛合理地填充孔,建立三个由结构,分割,深度组成的指南图像,并应用多个引导的贴片amatch,以产生八个候选候选图像。接下来,我们通过一个新型的策划模块来喂食所有候选构图,该模块选择了8x8反对称成对偏好矩阵的列求和良好的介绍。我们框架的结果受到了8个强大基线的用户的压倒性优先,其定量指标的改进高达7.4,而不是最好的基线喇嘛,而我们的技术与4种不同的SOTA配对时,我们的技术都会改善每个座椅,以使我们的每个人都非常偏爱用户,而不是用户偏爱用户。强大的超级分子基线。
translated by 谷歌翻译
对于多个实际应用,例如对象删除和图像编辑,图像介入是必不可少的任务。基于GAN的Deep Models大大改善了孔内结构和纹理的覆盖性能,但也可能产生意外的伪像,例如破裂的结构或颜色斑点。用户认为这些工件可以判断涂料模型的有效性,并修饰这些不完美的区域,以再次在典型的修饰工作流程中涂漆。受此工作流程的启发,我们提出了一项新的学习任务,以自动对知觉伪像的自动分割,并将模型应用于介入模型评估和迭代精致。具体而言,我们首先通过在最新的介入模型的结果中手动注释感知工件来构建一个新的镶嵌工件数据集。然后,我们在此数据集上训练高级细分网络,以可靠地将贴有映像的插入式伪像。其次,我们提出了一个称为感知伪影比率(PAR)的新的可解释的评估度量,该度量是令人反感的被涂料区域与整个原始区域的比率。 PAR证明了与实际用户偏好的密切相关性。最后,我们通过将我们的方法与多种最新涂料方法相结合,进一步将生成的掩码用于迭代图像介入。广泛的实验表明,在不同方法中,伪影区域的始终减少和质量改进。
translated by 谷歌翻译
阴影对于逼真的图像合成至关重要。基于物理的阴影渲染方法需要3D几何形状,这并不总是可用。基于深度学习的阴影综合方法从光信息到对象的阴影中学习映射,而无需明确建模阴影几何形状。尽管如此,它们仍然缺乏控制,并且容易出现视觉伪像。我们介绍了Pixel Heigh,这是一种新颖的几何表示,它编码对象,地面和相机姿势之间的相关性。像素高度可以根据3D几何形状计算,并在2D图像上手动注释,也可以通过有监督的方法从单视RGB图像中预测。它可用于根据投影几何形状计算2D图像中的硬阴影,从而精确控制阴影的方向和形状。此外,我们提出了一个数据驱动的软影子生成器,以基于软性输入参数将软性应用于硬阴影。定性和定量评估表明,所提出的像素高度显着提高了阴影产生的质量,同时允许可控性。
translated by 谷歌翻译
体积神经渲染方法,例如神经辐射场(NERFS),已实现了光真实的新型视图合成。但是,以其标准形式,NERF不支持场景中的物体(例如人头)的编辑。在这项工作中,我们提出了Rignerf,该系统不仅仅是仅仅是新颖的视图综合,并且可以完全控制头姿势和从单个肖像视频中学到的面部表情。我们使用由3D可变形面模型(3DMM)引导的变形场对头姿势和面部表情的变化进行建模。 3DMM有效地充当了Rignerf的先验,该rignerf学会仅预测3DMM变形的残留物,并使我们能够在输入序列中呈现不存在的新颖(刚性)姿势和(非刚性)表达式。我们仅使用智能手机捕获的简短视频进行培训,我们证明了我们方法在自由视图合成肖像场景的有效性,并具有明确的头部姿势和表达控制。项目页面可以在此处找到:http://shahrukhathar.github.io/2022/06/06/rignerf.html
translated by 谷歌翻译
我们提出了一种将任意样式图像的艺术特征转移到3D场景的方法。在点云或网格上执行3D风格的先前方法对复杂的现实世界场景的几何重建错误敏感。取而代之的是,我们建议对更健壮的辐射场字段表示。我们发现,常用的基于克矩阵的损失倾向于在没有忠实笔触的情况下产生模糊的结果,并引入了最近的基于邻居的损失,该损失非常有效地捕获样式的细节,同时保持多视图一致性。我们还提出了一种新颖的递延后传播方法,以使用在全分辨率渲染图像上定义的样式损失来优化记忆密集型辐射场。我们广泛的评估表明,我们的方法通过产生与样式图像更相似的艺术外观来优于基线。请检查我们的项目页面以获取视频结果和开源实现:https://www.cs.cornell.edu/projects/arf/。
translated by 谷歌翻译
我们为场景的生成模型提出了一个无监督的中级表示。该表示是中等水平的,因为它既不是人均也不是每图像。相反,场景被建模为一系列空间,深度订购的特征“斑点”。斑点分化在特征网格上,该特征网格被生成对抗网络解码为图像。由于斑点的空间均匀性和卷积固有的局部性,我们的网络学会了将不同的斑点与场景中的不同实体相关联,并安排这些斑点以捕获场景布局。我们通过证明,尽管没有任何监督训练,但我们的方法启用了诸如场景中的物体(例如,移动,卸下和修复家具),创建可行场景(例如,可靠的,Plaausible(例如,可靠),我们的方法可以轻松地操纵对象(例如,可行的情况)来证明这种紧急行为。带抽屉在特定位置的房间),将现实世界图像解析为组成部分。在充满挑战的室内场景的多类数据集上,Blobgan在FID测量的图像质量中优于图像质量。有关视频结果和交互式演示,请参见我们的项目页面:https://www.dave.ml/blobgan
translated by 谷歌翻译