我们研究了可变形对象的学习图动力学问题,这些动力学将其推广到未知物理特性。特别是,我们利用了像布状可变形物体的弹性物理特性的潜在表示,我们通过拉动相互作用探索。我们提出了EDO-NET(弹性可变形物体 - NET),该模型在具有不同弹性特性的各种样品上以自我监督的方式训练。EDO-NET共同学习了一个适应模块,负责提取对象物理特性的潜在表示,以及一个前向动力学模块,该模块利用潜在的表示来预测类似布的对象的未来状态,表示为图形。我们在模拟和现实世界中评估了江户网 - 评估其功能的:1)概括为布状可变形物体的未知物理特性,2)将学习的表示形式转移到新的下游任务。
translated by 谷歌翻译
与纺织品(例如辅助敷料)的物理互动依赖于先进的灵巧能力。拉扯和拉伸时纺织行为的潜在复杂性是由于纱线材料特性和纺织品构造技术所致。如今,还没有采用和注释的数据集评估各种交互或属性识别方法。影响这种相互作用的一种重要特性是材料弹性是由纱线材料和构造技术引起的:这两个是交织在一起的,如果不知道A-Priori,几乎无法通过在机器人平台上使用常见的传感来识别。我们介绍了弹性环境(EC),该概念集成了影响弹性行为的各种属性,以使其与纺织品进行更有效的物理互动。 EC的定义依赖于纺织工程中常用的压力/应变曲线,我们为机器人应用重新制定了压力/应变曲线。我们使用图形神经网络(GNN)使用EC来学习纺织品的通用弹性行为。此外,我们探讨了EC对非线性现实世界弹性行为的准确力量建模的影响,从而强调了当前机器人设置以感知纺织特性的挑战。
translated by 谷歌翻译
我们提出了循环式的舞蹈风格转移系统,该系统将以一种舞蹈方式将现有的运动剪辑转换为另一种舞蹈风格的运动剪辑,同时试图保留舞蹈的运动背景。我们的方法扩展了现有的自行车结构,用于建模音频序列,并集成多模式变压器编码器以说明音乐上下文。我们采用基于序列长度的课程学习来稳定培训。我们的方法捕获了运动框架之间丰富而长期的内部关系,这是运动转移和合成工作中的普遍挑战。我们进一步介绍了在舞蹈运动的背景下衡量转移力量和内容保存的新指标。我们进行了一项广泛的消融研究以及一项人类研究,其中包括30名具有5年或更长时间的舞蹈经验的参与者。结果表明,循环量会以目标样式产生逼真的运动,从而在自然性,传递强度和内容保存上明显优于基线周期。
translated by 谷歌翻译
结构节点嵌入,向量捕获图中每个节点的局部连接信息,在数据挖掘和机器学习中具有许多应用程序,例如网络对齐和节点分类,群集和异常检测。为了分析有向图的分析,例如交易图,通信网络和社交网络,在结构节点嵌入中捕获定向信息的能力是非常需要的,嵌入式提取方法的可伸缩性也是如此。然而,大多数现有方法仅为无向图设计。因此,我们提出了DigraphWave - 一种可扩展的算法,用于在有向图上提取结构节点嵌入。 DigraphWave嵌入由压缩扩散模式特征组成,它们的增强是两倍,以增加其区分能力。通过证明扩散初始化节点的局部附近的热量上的下限,建立了理论上是合理的扩散时间尺度值,而DigraphWave仅留下两个易于解释的超级标准:嵌入式维度和邻域分辨率指定器。在我们的实验中,两种嵌入的增强功能(称为换位和聚集)被证明会导致对自动形态身份分类的宏F1得分显着提高,而DigraphWave优于所有其他结构性嵌入碱基。此外,digraphwave要么胜过或匹配真实图形数据集上所有基准的性能,在网络对齐任务中显示出特别大的性能增益,同时也可以扩展到具有数百万节点和边缘的图形,比以前的速度快30倍基于扩散模式的方法,并具有一部分内存消耗。
translated by 谷歌翻译
从先前收集的专家数据数据集中学习提供了有望在没有不安全和昂贵的在线探索的情况下获取机器人政策。但是,一个主要的挑战是培训数据集中的各州与在测试时学到的政策访问的国家之间的分配转移。尽管先前的工作主要研究了在离线培训期间政策引起的分配变化,但研究在部署时间从分布状态恢复的问题还不是很好。我们通过引入一项恢复政策来减轻部署时间的分配转变,该恢复政策将代理人带回培训歧管,每当由于外部扰动而逐渐退出分布状态,例如。恢复策略依赖于训练数据密度的近似值和学习的模棱两可的映射,该映射将视觉观测映射到一个潜在空间中,在该空间中,翻译与机器人动作相对应。我们通过在真正的机器人平台上进行了几个操纵实验来证明所提出的方法的有效性。我们的结果表明,恢复策略使代理可以完成任务,而行为克隆仅由于分配转移问题而失败。
translated by 谷歌翻译
在这项工作中,我们对基于梯度的元学习(GBML)方法的适应后参数的分布进行了分析。先前的工作已经注意到,对于图像分类的情况,这种适应只发生在网络的最后一层。我们提出了一个更一般的观念,即参数通过与任务空间相同的维度的低维\ emph {subpace}进行更新,并表明这也可以进行回归。此外,诱导的子空间结构提供了一种方法来估计常见的几个弹药学习数据集任务空间的内在维度。
translated by 谷歌翻译
我们介绍了一种与数据对称性相对的学习表示形式的通用方法。核心思想是将潜在空间分解为不变因素和对称组本身。该组件在语义上分别对应于固有的数据类别,并构成姿势。学习者是自我监督的,并根据相对对称信息来渗透这些语义。该方法是由群体理论的理论结果激励的,并保证了无损,可解释和解开的表示。我们通过涉及具有多种对称性的数据集的实验来实证研究该方法。结果表明,我们的表示形式捕获数据的几何形状,并超过其他模棱两可的表示框架。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
我们引入了一种基于最近邻居回归的活动函数近似的算法。我们的活跃邻居回归器(ANNR)依靠Voronoi-Delaunay框架从计算几何形状到具有恒定估计函数值的空间将空间细分为恒定的函数值,并以一种将函数图的几何形状计入的方式选择新的查询点。我们将最新的最新活动函数近似值(称为defer)视为基于空间的增量矩形分区,为主基线。ANNR解决了由延期中使用的空间细分策略产生的许多局限性。我们提供了我们方法的计算有效实施以及理论停止保证。经验结果表明,Annr优于封闭形式函数和现实示例的基线,例如引力波参数推断和生成模型潜在空间的探索。
translated by 谷歌翻译
在无法明确计算系统状态(例如操纵可变形物体)的应用程序中,视觉动作计划特别出色,因为它可以直接从原始图像中进行计划。尽管深度学习技术已经显着加速了该领域,但其成功的关键要求是大量数据的可用性。在这项工作中,我们建议在数据稀缺的情况下实现视觉行动计划,以实现视觉行动计划。我们建立在潜在的空间路线图(LSR)框架上,该框架通过在低维潜在空间中建造的图表执行计划。特别是,ACE用于i)通过自动创建新的数据点来增强可用培训数据集,ii)在潜在图中的状态表示之间创建新的未观察到的连接;方式。我们在模拟框堆叠和现实世界折叠任务上验证了所提出的方法,分别显示了刚性和可变形的对象操纵任务的适用性。
translated by 谷歌翻译