结构节点嵌入,向量捕获图中每个节点的局部连接信息,在数据挖掘和机器学习中具有许多应用程序,例如网络对齐和节点分类,群集和异常检测。为了分析有向图的分析,例如交易图,通信网络和社交网络,在结构节点嵌入中捕获定向信息的能力是非常需要的,嵌入式提取方法的可伸缩性也是如此。然而,大多数现有方法仅为无向图设计。因此,我们提出了DigraphWave - 一种可扩展的算法,用于在有向图上提取结构节点嵌入。 DigraphWave嵌入由压缩扩散模式特征组成,它们的增强是两倍,以增加其区分能力。通过证明扩散初始化节点的局部附近的热量上的下限,建立了理论上是合理的扩散时间尺度值,而DigraphWave仅留下两个易于解释的超级标准:嵌入式维度和邻域分辨率指定器。在我们的实验中,两种嵌入的增强功能(称为换位和聚集)被证明会导致对自动形态身份分类的宏F1得分显着提高,而DigraphWave优于所有其他结构性嵌入碱基。此外,digraphwave要么胜过或匹配真实图形数据集上所有基准的性能,在网络对齐任务中显示出特别大的性能增益,同时也可以扩展到具有数百万节点和边缘的图形,比以前的速度快30倍基于扩散模式的方法,并具有一部分内存消耗。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
图形神经网络(GNN)已被证明可以实现竞争结果,以解决与图形相关的任务,例如节点和图形分类,链接预测和节点以及各种域中的图形群集。大多数GNN使用消息传递框架,因此称为MPNN。尽管有很有希望的结果,但据报道,MPNN会遭受过度平滑,过度阵型和不足的影响。文献中已经提出了图形重新布线和图形池作为解决这些局限性的解决方案。但是,大多数最先进的图形重新布线方法无法保留该图的全局拓扑,因此没有可区分(电感),并且需要调整超参数。在本文中,我们提出了Diffwire,这是一个在MPNN中进行图形重新布线的新型框架,它通过利用LOV \'ASZ绑定来原理,完全可区分且无参数。我们的方法通过提出两个新的,mpnns中的新的互补层来提供统一的图形重新布线:首先,ctlayer,一个学习通勤时间并将其用作边缘重新加权的相关函数;其次,Gaplayer是优化光谱差距的图层,具体取决于网络的性质和手头的任务。我们从经验上验证了我们提出的方法的价值,并使用基准数据集分别验证了这些层的每个层以进行图形分类。 Diffwire将通勤时间的可学习性汇集到相关的曲率定义,为发展更具表现力的MPNN的发展打开了大门。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
图表表示学习方法为网络中的节点生成数值矢量表示,从而能够在标准机器学习模型中使用。这些方法旨在保留关系信息,使得图表中类似的节点在表示空间中彼此接近。相似性可以很大程度上基于两个概念之一:连接或结构作用。在节点结构角色重要的任务中,基于连接的方法表现出差的性能。最近的工作已经开始专注于学习方法的可扩展性,将数百万到数十亿节点和边缘的大规模图。许多无监督的节点表示学习算法无法缩放到大图,并且无法生成未经证明节点的节点表示。在这项工作中,我们提出了推理SiR-Gn,该模型在随机图上预先训练,然后快速计算节点表示,包括非常大的网络。我们证明该模型能够捕获节点的结构角色信息,并在未经网络上的节点和图形分类任务中显示出优异的性能。此外,我们观察到推理SIR-GN的可扩展性与大规模图表的最快电流方法相当。
translated by 谷歌翻译
马尔可夫链是一类概率模型,在定量科学中已广泛应用。这部分是由于它们的多功能性,但是可以通过分析探测的便利性使其更加复杂。本教程为马尔可夫连锁店提供了深入的介绍,并探索了它们与图形和随机步行的联系。我们利用从线性代数和图形论的工具来描述不同类型的马尔可夫链的过渡矩阵,特别着眼于探索与这些矩阵相对应的特征值和特征向量的属性。提出的结果与机器学习和数据挖掘中的许多方法有关,我们在各个阶段描述了这些方法。本文并没有本身就成为一项新颖的学术研究,而是提出了一些已知结果的集合以及一些新概念。此外,该教程的重点是向读者提供直觉,而不是正式的理解,并且仅假定对线性代数和概率理论的概念的基本曝光。因此,来自各种学科的学生和研究人员可以访问它。
translated by 谷歌翻译
许多复杂网络的结构包括其拓扑顶部的边缘方向性和权重。可以无缝考虑这些属性组合的网络分析是可取的。在本文中,我们研究了两个重要的这样的网络分析技术,即中心和聚类。采用信息流基于集群的模型,该模型本身就是在计算中心的信息定理措施时构建。我们的主要捐款包括马尔可夫熵中心的广义模型,灵活地调整节点度,边缘权重和方向的重要性,具有闭合形式的渐近分析。它导致一种新颖的两级图形聚类算法。中心分析有助于推理我们对给定图形的方法的适用性,并确定探索当地社区结构的“查询”节点,从而导致群集聚类机制。熵中心计算由我们的聚类算法摊销,使其计算得高效:与使用马尔可夫熵中心为聚类的先前方法相比,我们的实验表明了多个速度的速度。我们的聚类算法自然地继承了适应边缘方向性的灵活性,以及​​边缘权重和节点度之间的不同解释和相互作用。总的来说,本文不仅具有显着的理论和概念贡献,还转化为实际相关性的文物,产生新的,有效和可扩展的中心计算和图形聚类算法,其有效通过广泛的基准测试进行了验证。
translated by 谷歌翻译
图形嵌入是图形节点到一组向量的转换。良好的嵌入应捕获图形拓扑,节点与节点的关系以及有关图,其子图和节点的其他相关信息。如果实现了这些目标,则嵌入是网络中有意义的,可理解的,可理解的压缩表示形式,可用于其他机器学习工具,例如节点分类,社区检测或链接预测。主要的挑战是,需要确保嵌入很好地描述图形的属性。结果,选择最佳嵌入是一项具有挑战性的任务,并且通常需要领域专家。在本文中,我们在现实世界网络和人为生成的网络上进行了一系列广泛的实验,并使用选定的图嵌入算法进行了一系列的实验。根据这些实验,我们制定了两个一般结论。首先,如果需要在运行实验之前选择一种嵌入算法,则Node2Vec是最佳选择,因为它在我们的测试中表现最好。话虽如此,在所有测试中都没有单一的赢家,此外,大多数嵌入算法都具有应该调整并随机分配的超参数。因此,如果可能的话,我们对从业者的主要建议是生成几个问题的嵌入,然后使用一个通用框架,该框架为无监督的图形嵌入比较提供了工具。该框架(最近在文献中引入并在GitHub存储库中很容易获得)将分歧分数分配给嵌入,以帮助区分好的分数和不良的分数。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
通常,使用网络编码在物理,生物,社会和信息科学中应用程序中复杂系统中实体之间的交互体系结构。为了研究复杂系统的大规模行为,研究网络中的中尺度结构是影响这种行为的构件。我们提出了一种新方法来描述网络中的低率中尺度结构,并使用多种合成网络模型和经验友谊,协作和蛋白质 - 蛋白质相互作用(PPI)网络说明了我们的方法。我们发现,这些网络拥有相对较少的“潜在主题”,可以成功地近似固定的中尺度上网络的大多数子图。我们使用一种称为“网络词典学习”(NDL)的算法,该算法结合了网络采样方法和非负矩阵分解,以学习给定网络的潜在主题。使用一组潜在主题对网络进行编码的能力具有多种应用于网络分析任务的应用程序,例如比较,降解和边缘推理。此外,使用我们的新网络去核和重建(NDR)算法,我们演示了如何通过仅使用直接从损坏的网络中学习的潜在主题来贬低损坏的网络。
translated by 谷歌翻译
这篇综述的目的是将读者介绍到图表内,以将其应用于化学信息学中的分类问题。图内核是使我们能够推断分子的化学特性的功能,可以帮助您完成诸如寻找适合药物设计的化合物等任务。内核方法的使用只是一种特殊的两种方式量化了图之间的相似性。我们将讨论限制在这种方法上,尽管近年来已经出现了流行的替代方法,但最著名的是图形神经网络。
translated by 谷歌翻译
图形嵌入是将网络的节点转换为一组向量。良好的嵌入应捕获底层图形拓扑和结构,节点到节点关系以及图形,其子图和节点的其他相关信息。如果实现了这些目标,则嵌入是网络的有意义,可以理解的,通常是压缩的。不幸的是,选择最好的嵌入是一个具有挑战性的任务,并且通常需要域名专家。在本文中,我们扩展了评估作者最近引入的图形嵌入的框架。现在,该框架为每个嵌入的嵌入分配两个分数,本地和全局,测量评估嵌入的嵌入的质量,以便分别需要良好地表示网络的全局属性。如果需要,最好的嵌入可以以无监督的方式选择,或者框架可以识别一些值得进一步调查的少数嵌入。该框架灵活,可扩展,可以处理无向/定向,加权/未加权图。
translated by 谷歌翻译
在本文中,我们考虑了一个$ {\ rm u}(1)$ - 连接图,也就是说,每个方向的边缘都赋予了一个单位模量复杂的数字,该数字在方向翻转下简单地结合了。当时,组合laplacian的自然替代品是所谓的磁性拉普拉斯(Hermitian Matrix),其中包括有关图形连接的信息。连接图和磁性拉普拉斯人出现,例如在角度同步问题中。在较大且密集的图的背景下,我们在这里研究了磁性拉普拉斯的稀疏器,即基于边缘很少的子图的光谱近似值。我们的方法依赖于使用自定义的确定点过程对跨越森林(MTSF)进行取样,这是一种比偏爱多样性的边缘的分布。总而言之,MTSF是一个跨越子图,其连接的组件是树或周期根的树。后者部分捕获了连接图的角不一致,因此提供了一种压缩连接中包含的信息的方法。有趣的是,当此连接图具有弱不一致的周期时,可以通过使用循环弹出的随机行走来获得此分布的样本。我们为选择Laplacian的自然估计量提供了统计保证,并调查了我们的Sparsifier在两个应用中的实际应用。
translated by 谷歌翻译
一组广泛建立的无监督节点嵌入方法可以解释为由两个独特的步骤组成:i)基于兴趣图的相似性矩阵的定义,然后是II)ii)该矩阵的明确或隐式因素化。受这个观点的启发,我们提出了框架的两个步骤的改进。一方面,我们建议根据自由能距离编码节点相似性,该自由能距离在最短路径和通勤时间距离之间进行了插值,从而提供了额外的灵活性。另一方面,我们根据损耗函数提出了一种基质分解方法,该方法将Skip-Gram模型的损失函数推广到任意相似性矩阵。与基于广泛使用的$ \ ell_2 $损失的因素化相比,该方法可以更好地保留与较高相似性分数相关的节点对。此外,它可以使用高级自动分化工具包轻松实现,并通过利用GPU资源进行有效计算。在现实世界数据集上的节点聚类,节点分类和链接预测实验证明了与最先进的替代方案相比,合并基于自由能的相似性以及所提出的矩阵分解的有效性。
translated by 谷歌翻译