分析和区分网络协议流量的能力对于网络资源管理来说至关重要,以通过电信提供差异化​​服务。自动化协议分析(APA)至关重要,以显着提高效率,减少对人类专家的依赖。在APA中群集未知协议有许多自动化的无监督方法。但是,许多这样的方法没有使用不同的测试数据集充分探索。因此,未能展示泛化的鲁棒性。本研究提出了一种综合框架,以评估APA中的特征提取和聚类方法的各种组合。它还提出了一种自动选择数据集依赖模型参数的新颖方法,用于特征提取,从而提高性能。新颖的基于田间的象形化方法的有希望的结果也导致我们对APA中未知协议的特征提取和聚类的新型自动混合方法提出。我们所提出的混合方法在不同的测试数据集中的9个中的7个中最佳地进行了最佳,从而显示宽大,以概括不同的未知协议。它还优于所有测试数据集中的最先进的开源APA工具中的无监督聚类技术。
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
部分微分方程(PDE)用于对科学和工程中的各种动力系统进行建模。深度学习的最新进展使我们能够以新的方式解决维度的诅咒,从而在更高的维度中解决它们。但是,深度学习方法受到训练时间和记忆的约束。为了解决这些缺点,我们实施了张量神经网络(TNN),这是一种量子启发的神经网络体系结构,利用张量网络的想法来改进深度学习方法。我们证明,与经典密集神经网络(DNN)相比,TNN提供了明显的参数节省,同时获得了与经典密集的神经网络相同的准确性。此外,我们还展示了如何以相同的精度来比DNN更快地训练TNN。我们通过将它们应用于求解抛物线PDE,特别是Black-Scholes-Barenblatt方程,该方程广泛用于金融定价理论,基于基准测试。还讨论了进一步的例子,例如汉密尔顿 - 雅各比 - 贝尔曼方程。
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
Feature acquisition algorithms address the problem of acquiring informative features while balancing the costs of acquisition to improve the learning performances of ML models. Previous approaches have focused on calculating the expected utility values of features to determine the acquisition sequences. Other approaches formulated the problem as a Markov Decision Process (MDP) and applied reinforcement learning based algorithms. In comparison to previous approaches, we focus on 1) formulating the feature acquisition problem as a MDP and applying Monte Carlo Tree Search, 2) calculating the intermediary rewards for each acquisition step based on model improvements and acquisition costs and 3) simultaneously optimizing model improvement and acquisition costs with multi-objective Monte Carlo Tree Search. With Proximal Policy Optimization and Deep Q-Network algorithms as benchmark, we show the effectiveness of our proposed approach with experimental study.
translated by 谷歌翻译
Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability. However, it ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference accuracy. This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization. The proposed method selectively expands channels for the quantization sensitive layers while satisfying hardware constraints (e.g., FLOPs, PARAMs). Based on in-depth analysis and experiments, we demonstrate that the proposed method can adapt several popular networks channels to achieve superior 2-bit quantization accuracy on CIFAR10 and ImageNet. In particular, we achieve the best-to-date Top-1/Top-5 accuracy for 2-bit ResNet50 with smaller FLOPs and the parameter size.
translated by 谷歌翻译
This study introduces and examines the potential of an AI system to generate health awareness messages. The topic of folic acid, a vitamin that is critical during pregnancy, served as a test case. Using prompt engineering, we generated messages that could be used to raise awareness and compared them to retweeted human-generated messages via computational and human evaluation methods. The system was easy to use and prolific, and computational analyses revealed that the AI-generated messages were on par with human-generated ones in terms of sentiment, reading ease, and semantic content. Also, the human evaluation study showed that AI-generated messages ranked higher in message quality and clarity. We discuss the theoretical, practical, and ethical implications of these results.
translated by 谷歌翻译
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
translated by 谷歌翻译
Although massive pre-trained vision-language models like CLIP show impressive generalization capabilities for many tasks, still it often remains necessary to fine-tune them for improved performance on specific datasets. When doing so, it is desirable that updating the model is fast and that the model does not lose its capabilities on data outside of the dataset, as is often the case with classical fine-tuning approaches. In this work we suggest a lightweight adapter, that only updates the models predictions close to seen datapoints. We demonstrate the effectiveness and speed of this relatively simple approach in the context of few-shot learning, where our results both on classes seen and unseen during training are comparable with or improve on the state of the art.
translated by 谷歌翻译