一方面确定适当数量的注意力头,另一方面,变压器编码器的数量是使用变压器体系结构的计算机视觉(CV)任务的重要选择。计算实验证实了期望参数的总数必须满足过度确定的条件(即,约束数量大大超过了参数数量)。然后,可以预期良好的概括性能。这设置了可以选择头部数量和变压器数量的边界。如果可以假定上下文在要分类的图像中的作用很小,那么使用多个头部数量较少(例如一个或两个)的多个变压器是有利的。在分类其类可能在很大程度上取决于图像中上下文的对象(即补丁取决于其他补丁的含义)时,头部数量与变压器的含义同样重要。
translated by 谷歌翻译
在深度学习社区中,对单精度浮点算术的承诺是广泛的。为了评估该承诺是否合理,计算精度(单个和双重精度)对结合梯度(CG)方法(二阶优化算法)和RMSProp(一阶算法)的优化性能的影响调查。具有一到五个完全连接的隐藏层以及中等或强的非线性的神经网络的测试已针对均方误差(MSE)进行了优化。已经设置了培训任务,以使其最低限度为零。计算实验已经披露,只要线路搜索找到改进,单精度就可以保持(超级线性收敛),并具有双重精确。诸如RMSPROP之类的一阶方法不会受益于双重精度。但是,对于中等非线性任务,CG显然是优越的。对于强烈的非线性任务,两种算法类别仅在与输出方差相关的均方误差方面发现解决方案相当差。每当解决方案有可能对应用程序目标有用时,具有双浮点精度的CG都会出色。
translated by 谷歌翻译
Curating datasets for object segmentation is a difficult task. With the advent of large-scale pre-trained generative models, conditional image generation has been given a significant boost in result quality and ease of use. In this paper, we present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions, without requiring segmentation labels. We leverage and explore pre-trained latent diffusion models, to automatically generate weak segmentation masks for concepts and objects. The masks are then used to fine-tune the diffusion model on an inpainting task, which enables fine-grained removal of the object, while at the same time providing a synthetic foreground and background dataset. We demonstrate that using this method beats previous methods in both discriminative and generative performance and closes the gap with fully supervised training while requiring no pixel-wise object labels. We show results on the task of segmenting four different objects (humans, dogs, cars, birds).
translated by 谷歌翻译
Generated texts from large pretrained language models have been shown to exhibit a variety of harmful, human-like biases about various demographics. These findings prompted large efforts aiming to understand and measure such effects, with the goal of providing benchmarks that can guide the development of techniques mitigating these stereotypical associations. However, as recent research has pointed out, the current benchmarks lack a robust experimental setup, consequently hindering the inference of meaningful conclusions from their evaluation metrics. In this paper, we extend these arguments and demonstrate that existing techniques and benchmarks aiming to measure stereotypes tend to be inaccurate and consist of a high degree of experimental noise that severely limits the knowledge we can gain from benchmarking language models based on them. Accordingly, we propose a new framework for robustly measuring and quantifying biases exhibited by generative language models. Finally, we use this framework to investigate GPT-3's occupational gender bias and propose prompting techniques for mitigating these biases without the need for fine-tuning.
translated by 谷歌翻译
Machine learning methods like neural networks are extremely successful and popular in a variety of applications, however, they come at substantial computational costs, accompanied by high energy demands. In contrast, hardware capabilities are limited and there is evidence that technology scaling is stuttering, therefore, new approaches to meet the performance demands of increasingly complex model architectures are required. As an unsafe optimization, noisy computations are more energy efficient, and given a fixed power budget also more time efficient. However, any kind of unsafe optimization requires counter measures to ensure functionally correct results. This work considers noisy computations in an abstract form, and gears to understand the implications of such noise on the accuracy of neural-network-based classifiers as an exemplary workload. We propose a methodology called "Walking Noise" that allows to assess the robustness of different layers of deep architectures by means of a so-called "midpoint noise level" metric. We then investigate the implications of additive and multiplicative noise for different classification tasks and model architectures, with and without batch normalization. While noisy training significantly increases robustness for both noise types, we observe a clear trend to increase weights and thus increase the signal-to-noise ratio for additive noise injection. For the multiplicative case, we find that some networks, with suitably simple tasks, automatically learn an internal binary representation, hence becoming extremely robust. Overall this work proposes a method to measure the layer-specific robustness and shares first insights on how networks learn to compensate injected noise, and thus, contributes to understand robustness against noisy computations.
translated by 谷歌翻译
We describe an approach for empirical modeling of steel phase kinetics based on symbolic regression and genetic programming. The algorithm takes processed data gathered from dilatometer measurements and produces a system of differential equations that models the phase kinetics. Our initial results demonstrate that the proposed approach allows to identify compact differential equations that fit the data. The model predicts ferrite, pearlite and bainite formation for a single steel type. Martensite is not yet included in the model. Future work shall incorporate martensite and generalize to multiple steel types with different chemical compositions.
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
Compressing neural network architectures is important to allow the deployment of models to embedded or mobile devices, and pruning and quantization are the major approaches to compress neural networks nowadays. Both methods benefit when compression parameters are selected specifically for each layer. Finding good combinations of compression parameters, so-called compression policies, is hard as the problem spans an exponentially large search space. Effective compression policies consider the influence of the specific hardware architecture on the used compression methods. We propose an algorithmic framework called Galen to search such policies using reinforcement learning utilizing pruning and quantization, thus providing automatic compression for neural networks. Contrary to other approaches we use inference latency measured on the target hardware device as an optimization goal. With that, the framework supports the compression of models specific to a given hardware target. We validate our approach using three different reinforcement learning agents for pruning, quantization and joint pruning and quantization. Besides proving the functionality of our approach we were able to compress a ResNet18 for CIFAR-10, on an embedded ARM processor, to 20% of the original inference latency without significant loss of accuracy. Moreover, we can demonstrate that a joint search and compression using pruning and quantization is superior to an individual search for policies using a single compression method.
translated by 谷歌翻译
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.
translated by 谷歌翻译
We propose a method that leverages graph neural networks, multi-level message passing, and unsupervised training to enable real-time prediction of realistic clothing dynamics. Whereas existing methods based on linear blend skinning must be trained for specific garments, our method is agnostic to body shape and applies to tight-fitting garments as well as loose, free-flowing clothing. Our method furthermore handles changes in topology (e.g., garments with buttons or zippers) and material properties at inference time. As one key contribution, we propose a hierarchical message-passing scheme that efficiently propagates stiff stretching modes while preserving local detail. We empirically show that our method outperforms strong baselines quantitatively and that its results are perceived as more realistic than state-of-the-art methods.
translated by 谷歌翻译