Unsupervised representation learning aims at describing raw data efficiently to solve various downstream tasks. It has been approached with many techniques, such as manifold learning, diffusion maps, or more recently self-supervised learning. Those techniques are arguably all based on the underlying assumption that target functions, associated with future downstream tasks, have low variations in densely populated regions of the input space. Unveiling minimal variations as a guiding principle behind unsupervised representation learning paves the way to better practical guidelines for self-supervised learning algorithms.
translated by 谷歌翻译
已知神经网络对对抗性例子高度敏感。这些可能是由于不同的因素,例如随机初始化或学习问题中的虚假相关性。为了更好地理解这些因素,我们提供了对不同场景中对抗性鲁棒性的精确研究,从初始化到不同制度的培训结束以及中间场景,由于“懒惰”培训,初始化仍然起着作用。我们考虑具有二次靶标和无限样品的高维度中的过度参数化网络。我们的分析使我们能够确定近似(通过测试错误测量)和鲁棒性之间的新权衡,从而在测试误差改善时只能变得更糟,反之亦然。我们还展示了由于不当缩放的随机初始化,线性化的懒惰训练机制如何使鲁棒性恶化。通过数值实验说明了我们的理论结果。
translated by 谷歌翻译
大规模的机器学习系统通常涉及分布在用户集合中的数据。联合学习算法通过将模型更新传达给中央服务器而不是整个数据集来利用此结构。在本文中,我们研究了一个个性化联合学习设置的随机优化算法,涉及符合用户级别(联合)差异隐私的本地和全球模型。在学习私人全球模型的同时,促进了隐私成本,但本地学习是完全私人的。我们提供概括保证,表明与私人集中学习协调本地学习可以产生一种普遍有用和改进的精度和隐私之间的权衡。我们通过有关合成和现实世界数据集的实验来说明我们的理论结果。
translated by 谷歌翻译
许多监督的学习问题涉及高维数据,例如图像,文本或图形。为了能够有效地利用数据,它通常有用的是在手头的问题中利用某些几何前瞻,例如与换算,置换子组或稳定性的不变性。通过考虑球体上这些功能的球形谐波分解,我们研究了目标功能提出了这种不变性和稳定性特性的学习问题的样本复杂性。我们提供内核方法的非参数率的收敛速度,并且在与相应的非不变内核相比,在该组上使用不变内核时,通过等于组的大小的因子的提高。当样本大小足够大时,这些改进是有效的,其渐近行为取决于该组的光谱特性。最后,这些增益扩展到不变性组之外,还涵盖小变形的几何稳定性,这里被建模为排列的子集(不一定是子组)。
translated by 谷歌翻译
Counterfactual reasoning from logged data has become increasingly important for many applications such as web advertising or healthcare. In this paper, we address the problem of learning stochastic policies with continuous actions from the viewpoint of counterfactual risk minimization (CRM). While the CRM framework is appealing and well studied for discrete actions, the continuous action case raises new challenges about modelization, optimization, and~offline model selection with real data which turns out to be particularly challenging. Our paper contributes to these three aspects of the CRM estimation pipeline. First, we introduce a modelling strategy based on a joint kernel embedding of contexts and actions, which overcomes the shortcomings of previous discretization approaches. Second, we empirically show that the optimization aspect of counterfactual learning is important, and we demonstrate the benefits of proximal point algorithms and differentiable estimators. Finally, we propose an evaluation protocol for offline policies in real-world logged systems, which is challenging since policies cannot be replayed on test data, and we release a new large-scale dataset along with multiple synthetic, yet realistic, evaluation setups.
translated by 谷歌翻译
Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译
Cybercriminals are moving towards zero-day attacks affecting resource-constrained devices such as single-board computers (SBC). Assuming that perfect security is unrealistic, Moving Target Defense (MTD) is a promising approach to mitigate attacks by dynamically altering target attack surfaces. Still, selecting suitable MTD techniques for zero-day attacks is an open challenge. Reinforcement Learning (RL) could be an effective approach to optimize the MTD selection through trial and error, but the literature fails when i) evaluating the performance of RL and MTD solutions in real-world scenarios, ii) studying whether behavioral fingerprinting is suitable for representing SBC's states, and iii) calculating the consumption of resources in SBC. To improve these limitations, the work at hand proposes an online RL-based framework to learn the correct MTD mechanisms mitigating heterogeneous zero-day attacks in SBC. The framework considers behavioral fingerprinting to represent SBCs' states and RL to learn MTD techniques that mitigate each malicious state. It has been deployed on a real IoT crowdsensing scenario with a Raspberry Pi acting as a spectrum sensor. More in detail, the Raspberry Pi has been infected with different samples of command and control malware, rootkits, and ransomware to later select between four existing MTD techniques. A set of experiments demonstrated the suitability of the framework to learn proper MTD techniques mitigating all attacks (except a harmfulness rootkit) while consuming <1 MB of storage and utilizing <55% CPU and <80% RAM.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
Explainability is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the topic, yet explainability still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the product of evidence stemming from the model and its input-output and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's decision-making) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are ope rationalized and provide new insight into common explanation methods that we analyze as case studies.
translated by 谷歌翻译