在计算加强学习中,越来越多的作品试图通过预测未来的感觉来构建代理人对世界的看法。关于环境观察的预测用作额外的输入功能,以实现更好的目标指导决策。这项工作中的一个公开挑战是从代理商可能做出的许多预测中决定哪些预测可能最能支持决策。在连续学习问题中,这一挑战尤其明显,在这种问题上,单一的经验可以为单一的代理使用。作为主要贡献,我们介绍了一个元梯度下降过程,代理商通过该过程学习1)要做出的预测,2)其所选预测的估计值; 3)如何使用这些估计来生成最大化未来奖励的政策 - - 全部在一个持续学习的过程中。在本手稿中,我们将表达为一般价值函数的预测考虑:对未来信号积累的时间扩展估计。我们证明,通过与环境的互动,代理可以独立选择解决部分观察性的预测,从而产生类似于专业指定的GVF的性能。通过学习,而不是手动指定这些预测,我们使代理商能够以自我监督的方式确定有用的预测,从而迈向真正的自主系统。
translated by 谷歌翻译
在计算强化学习中,越来越多的工作体验旨在通过关于未来感觉的预测来表达世界的代理人模型。在本手稿中,我们专注于以一般值函数表示的预测:时间延长了未来信号累积的估计。一个挑战是从无数的许多预测中确定了代理人可能会产生哪些可能支持决策的预测。在这项工作中,我们贡献了一个元梯度下降方法,代理可以直接指定它学习的预测,而独立于设计者指令。为此,我们介绍了适合这项调查的部分可观察的域名。然后,我们演示通过与环境的交互,代理可以独立地选择解决部分可观察性的预测,从而导致类似于专业选择的值函数的性能。通过学习,而不是手动指定这些预测,我们使代理能够以自我监督的方式识别有用的预测,从而迈向真正自治系统。
translated by 谷歌翻译
在本文中,我们为Pavlovian信号传达的多方面的研究 - 一个过程中学到的一个过程,一个代理商通过另一个代理商通知决策的时间扩展预测。信令紧密连接到时间和时间。在生成和接收信号的服务中,已知人类和其他动物代表时间,确定自过去事件以来的时间,预测到未来刺激的时间,并且都识别和生成展开时间的模式。我们调查通过引入部分可观察到的决策域来对学习代理之间的影响和信令在我们称之为霜冻空心的情况下如何影响学习代理之间的影响和信令。在该域中,预测学习代理和加强学习代理被耦合到两部分决策系统,该系统可以在避免时间条件危险时获取稀疏奖励。我们评估了两个域变型:机器代理在七态线性步行中交互,以及虚拟现实环境中的人机交互。我们的结果展示了帕夫洛维亚信号传导的学习速度,对药剂 - 代理协调具有不同时间表示(并且不)的影响,以及颞次锯齿对药剂和人毒剂相互作用的影响方式不同。作为主要贡献,我们将Pavlovian信号传导为固定信号范例与两个代理之间完全自适应通信学习之间的天然桥梁。我们进一步展示了如何从固定的信令过程计算地构建该自适应信令处理,其特征在于,通过快速的连续预测学习和对接收信号的性质的最小限制。因此,我们的结果表明了加固学习代理之间的沟通学习的可行建设者的途径。
translated by 谷歌翻译
深度强化学习已经证明了通过梯度下降调整的神经网络的潜力,以解决良好的环境中的复杂任务。但是,这些神经系统是缓慢的学习者,生产专门的药物,没有任何机制,无法继续学习培训课程。相反,生物突触可塑性是持久和多种多样的,并被认为在执行功能中起关键作用,例如工作记忆和认知灵活性,可能支持更高效和更通用的学习能力。受此启发的启发,我们建议建立具有动态权重的网络,能够不断执行自反射修改,这是其当前突触状态和动作奖励反馈的函数,而不是固定的网络配置。最终的模型,Metods(用于元优化的动力突触)是一种广泛适用的元强制学习系统,能够在代理策略空间中学习有效而强大的控制规则。具有动态突触的单层可以执行单次学习,将导航原则概括为看不见的环境,并表现出强大的学习自适应运动策略的能力,并与以前的元强化学习方法进行了比较。
translated by 谷歌翻译
在此,我们描述了我们称为艾伯塔省计划的人工智能研究方法。艾伯塔省的计划是在我们在艾伯塔省的研究小组中以及全世界志趣相投的其他人中追求的。我们欢迎所有将加入我们的人参加这一追求的人。
translated by 谷歌翻译
A long-standing challenge in artificial intelligence is lifelong learning. In lifelong learning, many tasks are presented in sequence and learners must efficiently transfer knowledge between tasks while avoiding catastrophic forgetting over long lifetimes. On these problems, policy reuse and other multi-policy reinforcement learning techniques can learn many tasks. However, they can generate many temporary or permanent policies, resulting in memory issues. Consequently, there is a need for lifetime-scalable methods that continually refine a policy library of a pre-defined size. This paper presents a first approach to lifetime-scalable policy reuse. To pre-select the number of policies, a notion of task capacity, the maximal number of tasks that a policy can accurately solve, is proposed. To evaluate lifetime policy reuse using this method, two state-of-the-art single-actor base-learners are compared: 1) a value-based reinforcement learner, Deep Q-Network (DQN) or Deep Recurrent Q-Network (DRQN); and 2) an actor-critic reinforcement learner, Proximal Policy Optimisation (PPO) with or without Long Short-Term Memory layer. By selecting the number of policies based on task capacity, D(R)QN achieves near-optimal performance with 6 policies in a 27-task MDP domain and 9 policies in an 18-task POMDP domain; with fewer policies, catastrophic forgetting and negative transfer are observed. Due to slow, monotonic improvement, PPO requires fewer policies, 1 policy for the 27-task domain and 4 policies for the 18-task domain, but it learns the tasks with lower accuracy than D(R)QN. These findings validate lifetime-scalable policy reuse and suggest using D(R)QN for larger and PPO for smaller library sizes.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
从连续的数据流不断地学习是具有挑战性的,特别是对于具有顺序数据的强化学习代理。当环境仅提供有关环境状态的部分信息的观察时,代理必须根据数据流基于经验流学习代理状态。我们指的是直接从经验数据流中学到的代理状态。经常性的神经网络可以学习代理状态,但训练方法是计算昂贵且对超参数敏感的,使它们无法实现在线学习。这项工作介绍了基于生成和测试方法来学习代理状态的方法。通过生成功能并测试其有用性来搜索生成和测试算法。在此过程中,保留了对代理对任务的性能有用的功能,并且最少的有用功能将替换为新生成的功能。我们研究了我们对两个在线多步预测问题的方法的有效性。第一个问题,追踪条件,侧重于代理商能够记住预测到未来的多个步骤的提示。在第二个问题中,跟踪图案化,代理需要学习观察信号中的模式,并记住它们以供将来的预测。我们表明我们所提出的方法可以在线有效地学习代理状态并产生准确的预测。
translated by 谷歌翻译
基于模型的强化学习有望通过学习环境中的中间模型来预测未来的相互作用,从而从与环境的互动较少的相互作用中学习最佳政策。当预测一系列相互作用时,限制预测范围的推出长度是关键的超参数,因为预测的准确性会降低远离真实体验的区域。结果,从长远来看,从长远来看,总体上更糟糕的政策。因此,超参数提供了质量和效率之间的权衡。在这项工作中,我们将调整推出长度调整为元级的顺序决策问题的问题构成了问题,该问题优化了基于模型的强化学习所学到的最终策略,鉴于环境相互作用的固定预算通过基于反馈动态调整超参数来调整超参数。从学习过程中,例如模型的准确性和互动的其余预算。我们使用无模型的深度强化学习来解决元级决策问题,并证明我们的方法在两个众所周知的强化学习环境上优于共同的启发式基准。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical value functions, operating at different temporal scales, with intrinsically motivated deep reinforcement learning. A top-level value function learns a policy over intrinsic goals, and a lower-level function learns a policy over atomic actions to satisfy the given goals. h-DQN allows for flexible goal specifications, such as functions over entities and relations. This provides an efficient space for exploration in complicated environments. We demonstrate the strength of our approach on two problems with very sparse, delayed feedback: (1) a complex discrete stochastic decision process, and (2) the classic ATARI game 'Montezuma's Revenge'.
translated by 谷歌翻译
在本文中,我们通过神经生成编码的神经认知计算框架(NGC)提出了一种无反向传播的方法,以机器人控制(NGC),设计了一种完全由强大的预测性编码/处理电路构建的代理,体现计划的原则。具体而言,我们制作了一种自适应剂系统,我们称之为主动预测性编码(ACTPC),该系统可以平衡内部生成的认知信号(旨在鼓励智能探索)与内部生成的仪器信号(旨在鼓励寻求目标行为)最终学习如何使用现实的机器人模拟器(即超现实的机器人套件)来控制各种模拟机器人系统以及复杂的机器人臂,以解决块提升任务并可能选择问题。值得注意的是,我们的实验结果表明,我们提出的ACTPC代理在面对稀疏(外部)奖励信号方面表现良好,并且具有竞争力或竞争性或胜过几种强大的基于反向Prop的RL方法。
translated by 谷歌翻译
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
translated by 谷歌翻译