在过去的几年中,语音表征的自我监督学习(SSL)受到了很多关注,但大多数工作都集中在具有大量未标记数据的语言和域上。但是,对于许多语言,即使在未标记的数据中也存在短缺,这限制了SSL的有效性。在这项工作中,我们专注于通过利用WAV2VEC 2.0预处理的数据增强来将SSL应用于域具有有限数据的域的问题。此外,我们建议对模型的每个组件进行改进,从而与LibrisPeech测试清除 /其他的WAV2VEC 2.0相比,将相对单词错误率(WER)提高高达13%。
translated by 谷歌翻译
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 1 1 Code and models are available at https://github.com/pytorch/fairseq Preprint. Under review.
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
自我监督的预训练可以有效地改善低资源自动语音识别(ASR)的性能。但是,现有的自我监督的预训练是任务不合时宜的,即可以应用于各种下游任务。尽管它扩大了其应用的范围,但预训练模型的容量并未完全用于ASR任务,并且学习的表示形式可能对ASR不最佳。在这项工作中,为了为低资源ASR构建更好的预训练模型,我们提出了一种称为WAV2VEC-S的预训练方法,我们使用特定于任务的半监督预培训来完善自我监督的预培训因此,ASR任务的预训练模型更有效地利用了预培训模型的能力来生成针对ASR的任务特定表示。实验表明,与WAV2VEC 2.0相比,WAV2VEC-S仅需要训练前时间的边际增长,但可以显着改善在内域,跨域和跨语言数据集上的ASR性能。 1H和10H微调分别为24.5%和6.6%。此外,我们表明,半监督的预训练可以通过规范相关分析来弥合自我监管的预训练模型与相应的微调模型之间的表示差距。
translated by 谷歌翻译
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-ofthe-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. 1
translated by 谷歌翻译
Current self-supervised learning algorithms are often modality-specific and require large amounts of computational resources. To address these issues, we increase the training efficiency of data2vec, a learning objective that generalizes across several modalities. We do not encode masked tokens, use a fast convolutional decoder and amortize the effort to build teacher representations. data2vec 2.0 benefits from the rich contextualized target representations introduced in data2vec which enable a fast self-supervised learner. Experiments on ImageNet-1K image classification show that data2vec 2.0 matches the accuracy of Masked Autoencoders in 16.4x lower pre-training time, on Librispeech speech recognition it performs as well as wav2vec 2.0 in 10.6x less time, and on GLUE natural language understanding it matches a retrained RoBERTa model in half the time. Trading some speed for accuracy results in ImageNet-1K top-1 accuracy of 86.8\% with a ViT-L model trained for 150 epochs.
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
自我监督的声学预培训已经在自动语音识别(ASR)任务上取得了惊人的结果。大多数成功的声学预训练方法使用对比学习来通过区分不同时间步长的表示来学习声学表示,忽略扬声器和环境鲁棒性。因此,在微调期间,预先训练的模型可以表现出域名数据的性能不佳。在这封信中,我们通过利用用于声学预训练的数据增强来设计一种新的一致性对比学习(CCL)方法。在原始音频上应用不同类型的增强,然后将增强的Audios馈入编码器。编码器不仅应将表示在一个音频中的表示相反,而且还可以最大限度地提高不同增强音频的表示的测量。通过这种方式,预先训练的模型可以学习与扬声器或环境的变化更加强大的文本相关的表示方法。实验表明,通过在WAV2VEC2.0上应用CCL方法,可以实现更好的结果都在域内数据和域外数据。特别是对于嘈杂的域名数据,可以获得超过15%的相对改进。
translated by 谷歌翻译
我们介绍了一个CLSRIL-23,一个自我监督的基于学习的音频预训练模型,它学习了来自23个指示语言的原始音频的交叉语言语音表示。它基于Wav2Vec 2.0之上,通过培训蒙面潜在语音表示的对比任务来解决,并共同了解所有语言共享的潜伏的量化。我们在预磨练期间比较语言明智的损失,以比较单机和多语言预制的影响。还比较了一些下游微调任务的表现,并且我们的实验表明,在学习语音表示方面,我们的实验表明,在学习语言的语音表示方面,以及在沿着流的性能方面的学习语音表示。在Hindi中使用多语言预磨模模型时,在WER中观察到5%的减少,9.5%。所有代码模型也都是开放的。 CLSRIL-23是一款以23美元的价格培训的型号,以及近10,000小时的音频数据培训,以促进在语言中的语音识别研究。我们希望将使用自我监督方法创建新的最新状态,特别是对于低资源指示语言。
translated by 谷歌翻译
最近的言语和语言技术的方法预先rain非常大型模型,用于特定任务。然而,这种大型模型的好处通常仅限于世界上少数资源丰富的语言。在这项工作中,我们对来自印度次大陆的低资源语言构建ASR系统进行多种贡献。首先,我们从各种领域策划40个印度语言的17,000小时的原始语音数据,包括教育,新闻,技术和金融。其次,使用这种原始语音数据,我们预先存在于40个印度语言的Wav2Vec样式模型的多个变体。第三,我们分析佩带的模型以查找关键特点:码本矢量的类似探测音素在语言中共享,跨层的表示是语言系列的判别,并且注意力头通常会在小型本地窗口中注意。第四,我们微调了9种语言的下游ASR模型,并在3个公共数据集上获得最先进的结果,包括非常低的资源语言,如Sinhala和Nepali。我们的工作建立了多语言预介质是建立ASR系统的有效策略,为印度次大陆的语言上不同的扬声器建立ASR系统。
translated by 谷歌翻译
我们提出了一种简单有效的自我监督学习方法,以供语音识别。该方法以随机预测量化器生成的离散标签的形式学习了一个模型,以预测蒙版的语音信号。尤其是量化器的语音输入带有随机初始化的矩阵,并在随机限制的代码簿中进行最近的邻居查找。在自我监督的学习过程中,矩阵和密码簿均未更新。由于未对随机预测量化器进行训练,并与语音识别模型分开,因此该设计使该方法具有灵活性,并且与通用语音识别体系结构兼容。在LibrisPeech上,我们的方法与以前的工作相比,使用非流式模型获得了与以前的工作相似的单词率,并且比WAV2VEC 2.0和WAP2VEC 2.0和w2v-bert提供了较低的单词率率和延迟。在多语言任务上,该方法还提供了与WAV2VEC 2.0和W2V-bert的显着改进。
translated by 谷歌翻译
从未标记数据的代表学习一直是对人工智能研究的重大兴趣。虽然自我监督的言语代表学习在语音研究界受欢迎,但很少有效地对非语音音频任务进行了全面分析了音频表示学习。在本文中,我们提出了一种自我监督的音频表示学习方法,并将其应用于各种下游非语音音频任务。我们将众所周知的Wav2Vec 2.0框架结合起来,这在用于语音任务的自我监督学习中取得了成功,具有参数效率的构装体系结构。我们的自我监督的预培训可以减少三分之二的标记数据的需求。在Audioset基准测试中,我们达到平均平均精度(地图)得分为0.415,这是通过仅限音频自我监督的学习在此数据集上的新型最先进的。我们的微调符合子也超越了在几个下游任务上以监督方式预先培训的先前系统的性能。我们进一步讨论了预先培训和微调的重要设计考虑因素。
translated by 谷歌翻译
学习高级语音表征的自学学习(SSL)一直是在低资源环境中构建自动语音识别(ASR)系统的一种流行方法。但是,文献中提出的共同假设是,可以使用可用于SSL预训练的相同域或语言的大量未标记数据,我们承认,在现实世界中,这是不可行的。在本文中,作为Interspeech Gram Vaani ASR挑战的一部分,我们尝试研究域,语言,数据集大小和上游训练SSL数据对最终性能下游ASR任务的效果。我们还建立在持续的训练范式的基础上,以研究使用SSL训练的模型所拥有的先验知识的效果。广泛的实验和研究表明,ASR系统的性能易受用于SSL预训练的数据。它们的性能随着相似性和预训练数据量的增加而提高。我们认为,我们的工作将有助于语音社区在低资源环境中建立更好的ASR系统,并引导研究改善基于SSL的语音系统预培训的概括。
translated by 谷歌翻译
我们利用Libri-Light数据集的未标记音频来获得半监督学习中最新的发展的最新发展,以获得自动语音识别的最新结果。更确切地说,我们使用使用WAV2VEC 2.0预训练的巨型构象模型进行了嘈杂的学生培训,并使用巨型构象模型进行了训练。通过这样做,我们能够在Librispeech测试/测试中获得1.4%/2.6%的单词率率(WERS),而目前的最新设备为1.7%/3.3%。
translated by 谷歌翻译
最近,蒙面的预测预训练在自我监督的学习(SSL)方面取得了显着的进展,以进行语音识别。它通常需要以无监督的方式获得的代码簿,从而使其准确和难以解释。我们提出了两种监督指导的代码书生成方法,以提高自动语音识别(ASR)的性能以及预训练效率,要么通过使用混合ASR系统来解码以生成音素级别对准(命名为PBERT),要么通过在上进行集群进行聚类。从端到端CTC模型(命名CTC聚类)提取的监督语音功能。混合动力和CTC模型均经过与微调相同的少量标记语音训练。实验表明,我们的方法对各种SSL和自我训练基准的优势具有显着优势,相对减少了17.0%。我们的预训练模型在非ASR语音任务中还显示出良好的可传递性。
translated by 谷歌翻译
本文研究了一种新型的预训练技术,该技术具有未配对的语音数据Segend2C,用于基于编码器的自动语音识别(ASR)。在一个多任务学习框架内,我们使用声音单元(即伪代码)介绍了编码器 - 编码器网络的两个预训练任务,这些任务来自离线聚类模型。一种是通过在编码器输出中通过掩盖语言建模来预测伪代码,例如Hubert模型,而另一个使解码器学会学会重建伪代码自动加工,而不是生成文本脚本。通过这种方式,解码器学会了在学习生成正确的文本之前先用代码重建原始语音信息。在Librispeech语料库上进行的综合实验表明,在没有解码器预训练的情况下,提出的Speek2C可以相对将单词错误率(WER)降低19.2%,并且在最先进的WAV2VEC 2.0和HUBERT上的表现显着优于微调子集为10h和100h。我们在https://github.com/microsoft/speecht5/tree/main/main/speech2c上发布代码和模型。
translated by 谷歌翻译
基于全注意力的变压器体系结构的强大建模能力通常会导致过度拟合,并且 - 对于自然语言处理任务,导致自动回归变压器解码器中隐式学习的内部语言模型,使外部语言模型的集成变得复杂。在本文中,我们探索了放松的注意力,对注意力的重量进行了简单易于实现的平滑平滑,从编码器。其次,我们表明它自然支持外部语言模型的整合,因为它通过放松解码器中的交叉注意来抑制隐式学习的内部语言模型。我们证明了在几项任务中放松注意力的好处,并与最近的基准方法相结合,并明显改善。具体而言,我们超过了最大的最大公共唇部阅读LRS3基准的26.90%单词错误率的先前最新性能,单词错误率为26.31%,并且我们达到了最佳表现的BLEU分数37.67在IWSLT14(de $ \ rightarrow $ en)的机器翻译任务没有外部语言模型,几乎没有其他模型参数。代码和模型将公开可用。
translated by 谷歌翻译
In this paper, we propose a novel multi-modal multi-task encoder-decoder pre-training framework (MMSpeech) for Mandarin automatic speech recognition (ASR), which employs both unlabeled speech and text data. The main difficulty in speech-text joint pre-training comes from the significant difference between speech and text modalities, especially for Mandarin speech and text. Unlike English and other languages with an alphabetic writing system, Mandarin uses an ideographic writing system where character and sound are not tightly mapped to one another. Therefore, we propose to introduce the phoneme modality into pre-training, which can help capture modality-invariant information between Mandarin speech and text. Specifically, we employ a multi-task learning framework including five self-supervised and supervised tasks with speech and text data. For end-to-end pre-training, we introduce self-supervised speech-to-pseudo-codes (S2C) and phoneme-to-text (P2T) tasks utilizing unlabeled speech and text data, where speech-pseudo-codes pairs and phoneme-text pairs are a supplement to the supervised speech-text pairs. To train the encoder to learn better speech representation, we introduce self-supervised masked speech prediction (MSP) and supervised phoneme prediction (PP) tasks to learn to map speech into phonemes. Besides, we directly add the downstream supervised speech-to-text (S2T) task into the pre-training process, which can further improve the pre-training performance and achieve better recognition results even without fine-tuning. Experiments on AISHELL-1 show that our proposed method achieves state-of-the-art performance, with a more than 40% relative improvement compared with other pre-training methods.
translated by 谷歌翻译
Automatic Speech Recognition (ASR) systems frequently use a search-based decoding strategy aiming to find the best attainable transcript by considering multiple candidates. One prominent speech recognition decoding heuristic is beam search, which seeks the transcript with the greatest likelihood computed using the predicted distribution. While showing substantial performance gains in various tasks, beam search loses some of its effectiveness when the predicted probabilities are highly confident, i.e., the predicted distribution is massed for a single or very few classes. We show that recently proposed Self-Supervised Learning (SSL)-based ASR models tend to yield exceptionally confident predictions that may hamper beam search from truly considering a diverse set of candidates. We perform a layer analysis to reveal and visualize how predictions evolve, and propose a decoding procedure that improves the performance of fine-tuned ASR models. Our proposed approach does not require further training beyond the original fine-tuning, nor additional model parameters. In fact, we find that our proposed method requires significantly less inference computation than current approaches. We propose aggregating the top M layers, potentially leveraging useful information encoded in intermediate layers, and relaxing model confidence. We demonstrate the effectiveness of our approach by conducting an empirical study on varying amounts of labeled resources and different model sizes, showing consistent improvements in particular when applied to low-resource scenarios.
translated by 谷歌翻译