The intersection of ground reaction forces in a small, point-like area above the center of mass has been observed in computer simulation models and human walking experiments. This intersection point is often called a virtual pivot point (VPP). With the VPP observed so ubiquitously, it is commonly assumed to provide postural stability for bipedal walking. In this study, we challenge this assumption by questioning if walking without a VPP is possible. Deriving gaits with a neuromuscular reflex model through multi-stage optimization, we found stable walking patterns that show no signs of the VPP-typical intersection of ground reaction forces. We, therefore, conclude that a VPP is not necessary for upright, stable walking. The non-VPP gaits found are stable and successfully rejected step-down perturbations, which indicates that a VPP is not primarily responsible for locomotion robustness or postural stability. However, a collision-based analysis indicates that non-VPP gaits increased the potential for collisions between the vectors of the center of mass velocity and ground reaction forces during walking, suggesting an increased mechanical cost of transport. Although our computer simulation results have yet to be confirmed through experimental studies, they already strongly challenge the existing explanation of the VPP's function and provide an alternative explanation.
translated by 谷歌翻译
我们已经开发了带有被动动态步行机制的双头机器人。这项研究提出了一个指南针模型,其摇摆质量连接到上半身,并沿水平方向振荡,以阐明上半身水平动力学对两足动物行走的影响。该模型的极限周期进行了数值搜索,并研究了它们的稳定性和能源效率。根据支持摇摆质量的弹簧常数,获得了几个不同的极限周期。特定类型的解决方案降低了稳定性,同时降低了意外下降并提高能源效率的风险。获得的结果归因于摇摆的质量朝与上半身相反的方向移动,从而防止行走时加速和减速的大幅变化。研究了所提出的模型的运动与实际的双头机器人与人类步态之间的关系。
translated by 谷歌翻译
两足动物的步行是机器人一直试图模仿数十年的最重要人类的标志之一。尽管以前的控制方法已经达到了在某些地形上行走的机器人,但仍需要一个框架,可以在各种兼容的表面上进行稳定和稳健的运动。这项工作提出了一种新型的生物力学风格的控制器,该控制器调节腿的刚度,以支持在兼容的地形上进行健壮和动态的两足动力。首先,扩展了3D双滑道模型,以支持具有可变刚度和阻尼参数的兼容表面上的首次运动。然后,将提出的控制器与线性季节调节器(LQR)控制器进行比较,就踏上软地形的稳健性而言。 LQR控制器显示仅达到174 kN/m的中等地面刚度水平,而其刚度较低,则其失败。相反,所提出的控制器可以在低至30 kN/m的刚度水平下产生稳定的步态,从而导致腿的垂直接地穿透性比其静止长度的10%深。提出的框架可以通过为多种合规形的地形生成稳定的步行轨迹来推进两足步行的领域,可用于控制双子和人形生物,以及改善具有可调刚度的假体设备的控制器。
translated by 谷歌翻译
在各种条件下行走期间关节阻抗的知识与临床决策以及机器人步态培训师,腿部假体,腿矫形器和可穿戴外骨骼的发展相关。虽然步行过程中的脚踝阻抗已经通过实验评估,但尚未识别步行期间的膝盖和髋关节阻抗。在这里,我们开发并评估了下肢扰动器,以识别跑步机行走期间髋关节,膝关节和踝关节阻抗。下肢扰动器(Loper)由致动器组成,致动器通过杆连接到大腿。 Loper允许将力扰动施加到自由悬挂的腿上,同时站立在对侧腿上,带宽高达39Hz。在以最小的阻抗模式下行走时,Loper和大腿之间的相互作用力低(<5N),并且对行走图案的效果小于正常行走期间的对象内变异性。使用摆动腿动力学的非线性多体动力学模型,在摆动阶段在速度为0.5米/秒的速度的九个受试者期间估计臀部,膝关节和踝关节阻抗。所识别的模型能够预测实验反应,因为分别占髋部,膝关节和踝部的平均方差为99%,96%和77%。对受试者刚度的平均分别在34-66nm / rad,0-3.5nm / rad,0-3.5nm / rad和2.5-24nm / rad的三个时间点之间变化,分别用于臀部,膝部和踝关节。阻尼分别在1.9-4.6 nms / rad,0.02-0.14 nms / rad和0.2-2.4 nms / rad的0.02-0.14 nms / rad供应到0.2-2.4nms / rad。发达的洛普勒对不受干扰的行走模式具有可忽略的影响,并且允许在摆动阶段识别臀部,膝关节和踝关节阻抗。
translated by 谷歌翻译
在本文中,我们研究了在中间姿势期间应用踝扭矩是否可以是降低运动量的更有效的方法,而不是单独执行腿部长度。脚踝在人类Gaits中有用,因为许多原因包括静态平衡。在这项工作中,我们专门避免了脚后跟和托对福利,以研究中姿势期间的脚跟到脚趾的压力中心的进展是有益的。我们使用“踝关节驱动弹簧加载的倒立摆”模型来模拟压力动力学的变速中心,并且应用轨迹优化来查找最小化运输成本的极限循环。结果表明,对于绝大多数Gaits,脚踝扭矩不会影响运输成本。脚踝在从接地跑到空中跑步的过渡期间减少了在狭窄的Gaits窄带期间的运输成本。这表明在稳定步态的中间姿势期间施加脚踝扭矩不是直接有益的策略,但最有可能是有益的脚跟和脚趾之间的道路。
translated by 谷歌翻译
人类的腿部运动受人体和神经控制的自然动态的控制。假定有助于人类行走效率高的一种机制是冲动的脚踝推断,它可能为挥杆腿弹射器提供动力。然而,尚不清楚人类下腿的机制,其复杂的肌肉弯曲单元跨越了单个关节和多个关节。腿部机器人允许在实际步行步态中测试复杂的腿力学,控制和环境之间的相互作用。我们开发了一个高0.49m,2.2千克的拟人化型双足机器人,带有比目鱼和甲壳虫肌肉弯曲单元,由线性弹簧代表,在机器人的踝关节和膝关节周围充当单型和二子弹性结构。我们测试了三个比目鱼和胃弹簧螺旋形构型对踝关节功率曲线的影响,踝关节和膝关节运动的协调,总运输成本和步行速度。我们用前馈中央模式发生器控制了机器人,在1.0Hz运动频率下,步行速度在0.35m/s和0.57m/s之间,腿长为0.35m。我们发现所有三种配置之间的差异。比目鱼弹簧刺刺调节机器人的速度和能量效率可能是通过踝关节放大的,而胃刺的弹簧螺旋体在推下时改变了脚踝和膝关节之间的运动配位。
translated by 谷歌翻译
尽管对Bipeds的运动稳定性进行了广泛的研究,但它们仍然缺乏在湿滑表面上缺乏干扰的应对能力。在本文中,关于表面摩擦限制,开发了一种用于稳定其矢状平面中的双模运动的新型控制器。通过考虑到表面稳定趋势的表面的物理限制,实现了更先进的可靠性水平,从而提供更高的功能,例如在低摩擦表面上推挽恢复,并防止稳定剂过度反应。基于离散的事件的策略包括修改每个脚步开头的步长和时间段,以便在考虑表面摩擦限制作为防止滑动的约束的同时重新建立稳定性必要条件。调整脚步以防止面对外部干扰的滑动被认为是保持稳定性的新策略,与人类反应非常相似。开发方法包括利用基本数学操作来获取控制输入的粗闭式解决方案,允许在收敛和计算成本之间达到平衡,即使具有适度的计算硬件,即使具有实时操作也非常适合实时操作。执行几种数值模拟,包括在低摩擦表面上的不同栅极之间的推挽恢复和切换,以证明所提出的控制器的有效性。在与人体步态经验相关的情况下,结果还揭示了一些有利于稳定性的物理方面以及在Gaits之间切换的事实,以降低面对不同条件的落地的风险。
translated by 谷歌翻译
人类能够以显着的敏捷性和轻松的方式谈判计划和计划外行为。本文的目的是系统地研究这种人类行为向两足步行机器人的翻译,即使形态本质上不同。具体而言,我们从计划和计划外的下台开始的人类数据开始。我们从人类减少阶层建模的角度分析了这些数据,编码质量(COM)运动学和接触力的中心,这使这些行为将这些行为转化为双皮德机器人的相应降低阶模型。我们通过基于非线性优化的控制器将所得的行为嵌入了两足机器人的全阶动力学中。最终结果是在不足的步行机器人上模拟中计划和计划外的下台。
translated by 谷歌翻译
步行运动计划基于运动的不同组成部分(DCM)和线性倒置模型(LIPM)是可以实现的替代方案之一,以生成在线人类人体机器人步态轨迹。该算法需要调整不同的参数。在此,我们开发了一个框架来获得最佳参数,以实现Real Robot步态的稳定且节能的轨迹。为了找到最佳轨迹,在机器人的每个下肢关节下,代表能耗的四个成本函数,关节速度和应用扭矩的总和,以及基于零矩(ZMP)稳定性标准的成本函数。遗传算法用于框架中,以优化这些成本函数中的每一个。尽管轨迹计划是在简化模型的帮助下完成的,但通过考虑Bullet Physics Engine Simulator中的完整动力学模型和脚部接触模型,可以获得每个成本函数的值。这种优化的结果是,以最有效的方式行走的最稳定性和行走是相互对比的。因此,在另一次尝试中,对ZMP和以三种不同速度的能量成本函数进行了多目标优化。最后,我们比较了使用最佳参数生成的设计轨迹,并将模拟产生的仿真模拟器。
translated by 谷歌翻译
Humans can balance very well during walking, even when perturbed. But it seems difficult to achieve robust walking for bipedal robots. Here we describe the simplest balance controller that leads to robust walking for a linear inverted pendulum (LIP) model. The main idea is to use a linear function of the body velocity to determine the next foot placement, which we call linear foot placement control (LFPC). By using the Poincar\'e map, a balance criterion is derived, which shows that LFPC is stable when the velocity-feedback coefficient is located in a certain range. And that range is much bigger when stepping faster, which indicates "faster stepping, easier to balance". We show that various gaits can be generated by adjusting the controller parameters in LFPC. Particularly, a dead-beat controller is discovered that can lead to steady-state walking in just one step. The effectiveness of LFPC is verified through Matlab simulation as well as V-REP simulation for both 2D and 3D walking. The main feature of LFPC is its simplicity and inherent robustness, which may help us understand the essence of how to maintain balance in dynamic walking.
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
可穿戴机器人设备有可能协助和保护用户。为了设计智能头盔,本文研究了音频和视觉警告的有效性,以帮助参与者振作起来。一项用户研究检查了运行时对用户应用的不同警告和影响。从不同的方向应用了缩放到用户质量的扰动力,并测量用户位移以表征警告的有效性。这是使用适应于运动循环期间精确矩,向前,向后,右或左侧扰动力来向前,向后,右或左侧扰动力进行的踏板活动的活动风洞来完成的。本文介绍了该系统的概述,并展示了步态过程中精确发出一致警告和扰动的能力。用户研究结果突出了视觉和音频警告的有效性,以帮助用户振作起来,从而导致指南,从而为未来的人类机器人警告系统提供信息。
translated by 谷歌翻译
Animals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few ten meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planar over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals' redundant muscle tendons as tunable dampers.
translated by 谷歌翻译
对于诸如搜索和救援之类的苛刻情况下,人形生物的部署,高度智能的决策和熟练的感觉运动技能。一个有前途的解决方案是通过远程操作通过互连机器人和人类来利用人类的实力。为了创建无缝的操作,本文提出了一个动态的远程组分框架,该框架将人类飞行员的步态与双皮亚机器人的步行同步。首先,我们介绍了一种方法,以从人类飞行员的垫脚行为中生成虚拟人类步行模型,该模型是机器人行走的参考。其次,步行参考和机器人行走的动力学通过向人类飞行员和机器人施加力来同步,以实现两个系统之间的动态相似性。这使得人类飞行员能够不断感知并取消步行参考和机器人之间的任何异步。得出机器人的一致步骤放置策略是通过步骤过渡来维持动态相似性的。使用我们的人机界面,我们证明了人类飞行员可以通过地位,步行和干扰拒绝实验实现模拟机器人的稳定和同步近距离运行。这项工作为将人类智力和反射转移到人形机器人方面提供了基本的一步。
translated by 谷歌翻译
In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.
translated by 谷歌翻译
串联连接的机器人是希望在大规模灾害中的搜索和救援等限制空间中执行任务的候选人。这种机器人通常是韧带,我们假设肢体的添加可以改善移动性。然而,在设计和控制这种装置方面的挑战在于以提高移动性的方式协调高维冗余模块。在这里,我们开发了一个控制串联连接的多腿机器人的一般框架。具体地,我们结合了两种方法来构建一般的形状控制方案,其可以为各种机器人形态的有效运动提供自变形(“Gaits”)的基线模式。首先,我们从维度降低和生物步态分类方案中获取灵感,以产生身体变形和脚提升/降低的循环模式,其促进了任意基板接触图案的产生。其次,我们使用几何力学方法来促进识别这些起伏的最佳相位,以最大化速度和/或稳定性。我们的方案允许在扁平摩擦地形上的多腿机器人机车上的有效Gaits开发有多种数量的四肢(4,6,16,甚至0四肢)和身体致动能力(包括在Limbless设备上的侧壁Gaits)。通过适当协调身体波动和腿部放置,我们的框架结合了Limbless机器人(模块化)和腿机器人(移动性)的优势。我们预计我们的框架可以提供一般的控制方案,以便快速部署一般的多腿机器人,铺平往达在现实条件下遍历复杂环境的机器的方式。
translated by 谷歌翻译
本文介绍了一个新颖的自适应频率MPC框架,用于在地形上具有不均匀的垫脚石上的两足球运动。详细说明,我们打算使用此MPC实现双足体周期步态的自适应脚部和步态,以便在不慢下放慢速度的情况下以不连续性穿越地形。我们将这种自适应频率MPC与Kino-Dynamics轨迹优化,以实现最佳步态时期,质量中心(COM)轨迹和脚部位置。我们使用全身控制(WBC)以及自适应频率MPC来跟踪离线优化的最佳轨迹。在数值验证中,我们具有优化的自适应频率MPC框架已显示出比固定频率MPC的优势。所提出的框架可以控制两足动物的机器人,穿过具有扰动的石头高度,宽度和表面形状的不均匀的垫脚石地形,同时保持平均速度为1.5 m/s。
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
为了在医疗和工业环境中广泛采用可穿戴机器人外骨骼,至关重要的是,它们可以适应性地支持大量运动。我们提出了一种新的人机界面,以同时在一系列“看不见的”步行条件和未用于建立控制界面的“看不见”步行条件和过渡期间同时驱动双侧踝部外骨骼。提出的方法使用人特异性的神经力学模型从测量的肌电图(EMG)和关节角度实时估算生物踝关节扭矩。基于干扰观察者的低级控制器将生物扭矩估计转换为外骨骼命令。我们称此“基于神经力学模型的控制”(NMBC)。 NMBC使六个人能够自愿控制六个步行条件下的双边踝部外骨骼,包括所有中间过渡,即两个步行速度,每个步行速度在三个地面高程中进行,不需要预先定义的扭矩轮廓,也不需要先验选择的神经肌肉肌肉反射规则,或国家机器在文献中很常见。在涉及月球漫步的灵活的运动任务上进行了一个单一的主题案例研究。 NMBC始终启用能够减少生物踝扭矩,以及与非辅助条件相比,在步行条件(24%扭矩; 14%EMG)之间以及步行条件(24%扭矩; 14%EMG)之间的八个踝部肌肉EMG。新型步行条件下的扭矩和EMG减少表明,外骨骼在操作员的神经肌肉系统控制的外观上进行了共生。这为系统地采用可穿戴机器人作为现场医疗和职业环境的一部分开辟了新的途径。
translated by 谷歌翻译