人类的腿部运动受人体和神经控制的自然动态的控制。假定有助于人类行走效率高的一种机制是冲动的脚踝推断,它可能为挥杆腿弹射器提供动力。然而,尚不清楚人类下腿的机制,其复杂的肌肉弯曲单元跨越了单个关节和多个关节。腿部机器人允许在实际步行步态中测试复杂的腿力学,控制和环境之间的相互作用。我们开发了一个高0.49m,2.2千克的拟人化型双足机器人,带有比目鱼和甲壳虫肌肉弯曲单元,由线性弹簧代表,在机器人的踝关节和膝关节周围充当单型和二子弹性结构。我们测试了三个比目鱼和胃弹簧螺旋形构型对踝关节功率曲线的影响,踝关节和膝关节运动的协调,总运输成本和步行速度。我们用前馈中央模式发生器控制了机器人,在1.0Hz运动频率下,步行速度在0.35m/s和0.57m/s之间,腿长为0.35m。我们发现所有三种配置之间的差异。比目鱼弹簧刺刺调节机器人的速度和能量效率可能是通过踝关节放大的,而胃刺的弹簧螺旋体在推下时改变了脚踝和膝关节之间的运动配位。
translated by 谷歌翻译
Animals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few ten meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planar over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals' redundant muscle tendons as tunable dampers.
translated by 谷歌翻译
在本文中,我们研究了在中间姿势期间应用踝扭矩是否可以是降低运动量的更有效的方法,而不是单独执行腿部长度。脚踝在人类Gaits中有用,因为许多原因包括静态平衡。在这项工作中,我们专门避免了脚后跟和托对福利,以研究中姿势期间的脚跟到脚趾的压力中心的进展是有益的。我们使用“踝关节驱动弹簧加载的倒立摆”模型来模拟压力动力学的变速中心,并且应用轨迹优化来查找最小化运输成本的极限循环。结果表明,对于绝大多数Gaits,脚踝扭矩不会影响运输成本。脚踝在从接地跑到空中跑步的过渡期间减少了在狭窄的Gaits窄带期间的运输成本。这表明在稳定步态的中间姿势期间施加脚踝扭矩不是直接有益的策略,但最有可能是有益的脚跟和脚趾之间的道路。
translated by 谷歌翻译
我们已经开发了带有被动动态步行机制的双头机器人。这项研究提出了一个指南针模型,其摇摆质量连接到上半身,并沿水平方向振荡,以阐明上半身水平动力学对两足动物行走的影响。该模型的极限周期进行了数值搜索,并研究了它们的稳定性和能源效率。根据支持摇摆质量的弹簧常数,获得了几个不同的极限周期。特定类型的解决方案降低了稳定性,同时降低了意外下降并提高能源效率的风险。获得的结果归因于摇摆的质量朝与上半身相反的方向移动,从而防止行走时加速和减速的大幅变化。研究了所提出的模型的运动与实际的双头机器人与人类步态之间的关系。
translated by 谷歌翻译
腿部运动中的弹簧基于弹簧的执行器可提供能量效率和提高的性能,但增加了控制器设计的难度。尽管以前的作品集中在广泛的建模和模拟上,以找到此类系统的最佳控制器,但我们建议直接在真实机器人上学习无模型控制器。在我们的方法中,步态首先是由中央模式发电机(CPG)合成的,其参数被优化以快速获得可实现有效运动的开环控制器。然后,为了使该控制器更强大并进一步提高性能,我们使用强化学习来关闭循环,以在CPG之上学习纠正措施。我们评估了DLR弹性四足动物BERT中提出的方法。我们在学习小跑和前进步态方面的结果表明,对弹簧执行动力学的开发自然而然地从对动态运动的优化中出现,尽管没有模型,但仍会产生高性能的运动。整个过程在真正的机器人上不超过1.5小时,并导致自然步态。
translated by 谷歌翻译
尽管大多数微型机器人在坚固耐用的地形上都面临困难,但甲虫可以在复杂的底物上平稳行走而不会滑倒或粘在地面上,因为它们的刚度可变可变的塔西(Tarsi)和可在塔西(Tarsi)的尖端上伸展的钩子。在这项研究中,我们发现甲虫会积极弯曲并定期扩大爪子以在网状表面上自由爬行。受甲虫的爬行机制的启发,我们设计了一个8厘米的微型攀岩机器人,以与天然甲虫相同的循环方式打开和弯曲的人造爪。机器人可以在网格表面上以可控步态自由攀爬,陡峭的斜角60 {\ deg},甚至过渡表面。据我们所知,这是第一个可以同时攀登网格表面和悬崖倾斜的微型机器人。
translated by 谷歌翻译
串联连接的机器人是希望在大规模灾害中的搜索和救援等限制空间中执行任务的候选人。这种机器人通常是韧带,我们假设肢体的添加可以改善移动性。然而,在设计和控制这种装置方面的挑战在于以提高移动性的方式协调高维冗余模块。在这里,我们开发了一个控制串联连接的多腿机器人的一般框架。具体地,我们结合了两种方法来构建一般的形状控制方案,其可以为各种机器人形态的有效运动提供自变形(“Gaits”)的基线模式。首先,我们从维度降低和生物步态分类方案中获取灵感,以产生身体变形和脚提升/降低的循环模式,其促进了任意基板接触图案的产生。其次,我们使用几何力学方法来促进识别这些起伏的最佳相位,以最大化速度和/或稳定性。我们的方案允许在扁平摩擦地形上的多腿机器人机车上的有效Gaits开发有多种数量的四肢(4,6,16,甚至0四肢)和身体致动能力(包括在Limbless设备上的侧壁Gaits)。通过适当协调身体波动和腿部放置,我们的框架结合了Limbless机器人(模块化)和腿机器人(移动性)的优势。我们预计我们的框架可以提供一般的控制方案,以便快速部署一般的多腿机器人,铺平往达在现实条件下遍历复杂环境的机器的方式。
translated by 谷歌翻译
为了在医疗和工业环境中广泛采用可穿戴机器人外骨骼,至关重要的是,它们可以适应性地支持大量运动。我们提出了一种新的人机界面,以同时在一系列“看不见的”步行条件和未用于建立控制界面的“看不见”步行条件和过渡期间同时驱动双侧踝部外骨骼。提出的方法使用人特异性的神经力学模型从测量的肌电图(EMG)和关节角度实时估算生物踝关节扭矩。基于干扰观察者的低级控制器将生物扭矩估计转换为外骨骼命令。我们称此“基于神经力学模型的控制”(NMBC)。 NMBC使六个人能够自愿控制六个步行条件下的双边踝部外骨骼,包括所有中间过渡,即两个步行速度,每个步行速度在三个地面高程中进行,不需要预先定义的扭矩轮廓,也不需要先验选择的神经肌肉肌肉反射规则,或国家机器在文献中很常见。在涉及月球漫步的灵活的运动任务上进行了一个单一的主题案例研究。 NMBC始终启用能够减少生物踝扭矩,以及与非辅助条件相比,在步行条件(24%扭矩; 14%EMG)之间以及步行条件(24%扭矩; 14%EMG)之间的八个踝部肌肉EMG。新型步行条件下的扭矩和EMG减少表明,外骨骼在操作员的神经肌肉系统控制的外观上进行了共生。这为系统地采用可穿戴机器人作为现场医疗和职业环境的一部分开辟了新的途径。
translated by 谷歌翻译
在各种条件下行走期间关节阻抗的知识与临床决策以及机器人步态培训师,腿部假体,腿矫形器和可穿戴外骨骼的发展相关。虽然步行过程中的脚踝阻抗已经通过实验评估,但尚未识别步行期间的膝盖和髋关节阻抗。在这里,我们开发并评估了下肢扰动器,以识别跑步机行走期间髋关节,膝关节和踝关节阻抗。下肢扰动器(Loper)由致动器组成,致动器通过杆连接到大腿。 Loper允许将力扰动施加到自由悬挂的腿上,同时站立在对侧腿上,带宽高达39Hz。在以最小的阻抗模式下行走时,Loper和大腿之间的相互作用力低(<5N),并且对行走图案的效果小于正常行走期间的对象内变异性。使用摆动腿动力学的非线性多体动力学模型,在摆动阶段在速度为0.5米/秒的速度的九个受试者期间估计臀部,膝关节和踝关节阻抗。所识别的模型能够预测实验反应,因为分别占髋部,膝关节和踝部的平均方差为99%,96%和77%。对受试者刚度的平均分别在34-66nm / rad,0-3.5nm / rad,0-3.5nm / rad和2.5-24nm / rad的三个时间点之间变化,分别用于臀部,膝部和踝关节。阻尼分别在1.9-4.6 nms / rad,0.02-0.14 nms / rad和0.2-2.4 nms / rad的0.02-0.14 nms / rad供应到0.2-2.4nms / rad。发达的洛普勒对不受干扰的行走模式具有可忽略的影响,并且允许在摆动阶段识别臀部,膝关节和踝关节阻抗。
translated by 谷歌翻译
大多数Quadrupss开发的高度驱动,因此他们的控制是非常繁琐的。它们需要先进的电子设备连续解决复杂的逆运动型方程。此外,随着传统距离传感器通常由于机器人的运动而导致的连续扰动通常发生故障,它们要求特殊和昂贵的传感器自动导航环境。另一个挑战是在步行时保持机器人的连续动态稳定性,这需要复杂和最先进的控制算法。本文介绍了我们内部棱镜联合电池的硬件设计和控制架构的彻底描述,称为Prisma。我们的目标是伪造强大而温制性的稳定的四足机器人,可以使用基本控制算法并利用传统传感器来导航未知环境。我们讨论了机器人在其运动,不同脚轨迹,可制造性和控制方面的益处和限制。
translated by 谷歌翻译
我们提出了一个基于倒置摆的可溶性双头步行模型,该模型具有两个无质量的铰接腿,能够在不平坦的地板和倾斜的平面上行走。两足机器人的大步迈进,是由于站立腿的摆动运动和尾腿的铰接运动。由于腿部的交替作用,站立和尾腿的交替作用以及挡块运动的能量保存,因此可以步态。通过在步幅之间的过渡和每个步幅的适应性之间施加相同的最大开口角,可以在不平坦的表面和倾斜平面上进行运动。该模型可溶于封闭形式,并且在时间上可逆,对不同类型的双头运动进行建模。已经得出了步态速度作为机器人参数的函数的几个优化结果。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
大多数腿部机器人都是由串行安装链路和执行器的腿部结构构建的,并通过复杂的控制器和传感器反馈来控制。相比之下,动物发展了多段腿,关节之间的机械耦合以及多段的脚。它们在所有地形上运行敏捷,可以说是通过更简单的运动控制。在这里,我们专注于开发抗原在自然地形上也滑落和下沉的脚步机制。我们提出了安装在具有多接头机械肌腱耦合的鸟类灵感机器人腿上的多段脚的首先结果。我们的单段和两段机械自适应的脚显示在开始滑动之前,在多个软和硬质基材上显示了可行的水平力。我们还观察到,与球形和圆柱 - 脚相比,分割的脚减少了软底物上的下沉。我们报告了多段脚如何提供非常适合双皮亚机器人的可行压力点的范围范围,还适用于斜坡和自然地形上的四倍机器人。我们的结果还提供了对诸如级别鸟类等动物的分段脚的功能理解。
translated by 谷歌翻译
由于其鲁棒性和可扩展性,在使用增强学习的速度学习时,可以越来越兴趣地学习四足机器人的速度指令跟踪控制器。但是,无论命令速度如何,单个策略训练训练,通常都显示了单个步态。考虑到根据四足动物的速度,考虑到最佳步态存在的次优的解决方案。在这项工作中,我们提出了一个分层控制器,用于四足机器人,可以在跟踪速度命令的同时生成多个Gaits(即步态,小跑,绑定)。我们的控制器由两项策略组成,每个政策都作为中央图案发生器和本地反馈控制器组成,并培训了具有层次强化学习。实验结果表明1)特定速度范围的最佳步态的存在2)与由单个策略组成的控制器相比,我们的分层控制器的效率通常显示单个步态。代码公开可用。
translated by 谷歌翻译
本文介绍了Scalucs,这是一种四足动物,该机器人在地上,悬垂和天花板上爬上攀爬,并在地面上爬行。 Scaleer是最早的自由度四束机器人之一,可以在地球的重力下自由攀爬,也是地面上最有效的四足动物之一。在其他最先进的登山者专门攀登自己的地方,Scaleer承诺使用有效载荷\ Textit {和}地面运动实践自由攀爬,这实现了真正的多功能移动性。新的攀登步态滑冰步态通过利用缩放器的身体连锁机制来增加有效载荷。 Scaleer在地面上达到了最大归一化的运动速度,即$ 1.87 $ /s,$ 0.56 $ m /s,$ 1.2 $ /min,或$ 0.42 $ m /min /min的岩石墙攀爬。有效载荷能力达到地面上缩放器重量的233美元,垂直墙上的$ 35 $%。我们的山羊抓手是一种机械适应的两指抓手,成功地抓住了凸凸和非凸的对象,并支持缩放器。
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
我们提出了一种基于直接质心控制的人形机器人的运动和平衡的综合方法。我们的方法使用人形生物的五质量描述。它从机器人的所需脚部轨迹和质心参数产生全身运动。一组简化的模型用于制定一般和直观的控制定律,然后实时应用它们,以估算和调节质量位置的中心和多体惯性主轴的方向。所提出的算法的组合产生了一条伸展的步态,并具有自然的上身运动。由于仅需要6轴IMU和关节编码器才能实现,因此机器人之间的可移植性很高。我们的方法已通过类人类开放式平台对实验进行了实验验证,证明了全身运动和推动排斥能力。
translated by 谷歌翻译
将包装从存储设施运送到消费者前门的物流通常采用高度专业的机器人,通常会将子任务分配到不同的系统,例如,操纵器臂进行分类和轮式车辆进行交付。最近的努力试图通过腿部和人形机器人进行统一的方法。但是,这些解决方案占据了大量空间,从而减少了可以适合运送车辆的包装数量。结果,这些庞大的机器人系统通常会降低可伸缩性和并行任务的潜力。在本文中,我们介绍了Limms(锁存智能模块化移动系统),以解决典型的最后一英里交付的操纵和交付部分,同时保持最小的空间足迹。 Limms是一种对称设计的,6型自由度(DOF)的类似于附件的机器人,两端都带有轮子和闩锁机构。通过将锁在表面上并锚定在一端,Limms可以充当传统的6多型操纵器臂。另一方面,多个lims可以锁在一个盒子上,并且像腿部机器人系统一样行为,包装是身体。在运输过程中,与传统的机器人系统相比,LIMM紧紧地折叠起来,占用的空间要少得多。一大批limms单元可以安装在单个送货工具内部,为新的交付优化和混合计划方法开放,从未做过。在本文中,使用硬件原型研究和呈现了LIMM的可行性,以及在典型的最后一英里交付中的一系列子任务的仿真结果。
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
通过提供超出人为局限性的环境,机器人是空间探索的关键仪器。跳跃机器人概念是有吸引力的谈判复杂地形的解决方案。然而,在克服的工程挑战中,能够持续运行的跳跃机器人概念,机械故障模式的减少是最基本的。本研究提出开发跳跃机器人,重点是减少机制维护的最小致动。我们介绍了Sarrus式连杆的合成,以限制系统在不使用典型的同步齿轮的情况下对系统进行三种翻译程度。我们将目前的研究界定到垂直固体跳跃,以评估基本主驱动轴的性能。实验室示威者有助于转移理论概念和方法。实验室示威者进行了63%的动能转换效率的跳跃,理论最大为73%。令人满意的运行开辟了朝向太空勘探跳跃机器人平台的发展的设计优化和方向跳跃能力。
translated by 谷歌翻译