创伤干预的阳性结果取决于插入的金属植入物的术中评价。由于金属伪影,该评估的质量大大取决于所谓的金属伪影减少方法(MAR)的性能。这些MAR方法中的大多数需要先前的插入金属物体分割。因此,尽管存在一些主要缺点,但是,施加在重建的3D体积中的基于基于阈值的分割方法的通常。利用本出版物,研究了将分割任务转移到基于学习的基于学习的视图 - 一致的2D投影的方法的可能性。为了分割本金属,研究了使用在CADaVer研究期间获得的真实数据进行培训的基于基于学习的2D投影明智的分割网络。为了克服与2D投影明智分割的缺点,提出了一种一致性滤波器。通过使用新的分段掩码将标准FSMAR的结果与修改后的FSMAR版本进行比较,研究了移位分割域的影响。对真实尸体数据进行定量和定性评估,调查方法显示了MAR性能增加和对金属伪影的不敏感性。对于重建外部的金属外部的金属或消失金属外壳的情况,可以显示伪影的显着降低。因此,增加到大约3 dB w.r.t.实现了所有切片的平均PSNR度量,单切片最多9 dB。所示结果揭示了转变对基于2D的分段方法的有益影响,以便使用MAS方法的下游使用的真实数据。
translated by 谷歌翻译
金属伪影校正是锥形束计算机断层扫描(CBCT)扫描中的一个具有挑战性的问题。插入解剖结构的金属植入物在重建图像中导致严重的伪影。广泛使用的基于介入的金属伪像减少(MAR)方法需要对投影中的金属痕迹进行分割,这是一项艰巨的任务。一种方法是使用深度学习方法来细分投影中的金属。但是,深度学习方法的成功受到现实培训数据的可用性的限制。由于植入物边界和大量预测,获得可靠的地面真相注释是充满挑战和耗时的。我们建议使用X射线模拟从临床CBCT扫描中生成合成金属分割训练数据集。我们比较具有不同数量的光子的仿真效果,还比较了几种培训策略以增加可用数据。我们将模型在真实临床扫描中的性能与常规阈值MAR和最近的深度学习方法进行比较。我们表明,具有相对较少光子的模拟适用于金属分割任务,并且用全尺寸和裁剪的投影训练深度学习模型共同提高了模型的鲁棒性。我们显示出受严重运动,体素尺寸下采样和落水量金属影响的图像质量的显着改善。我们的方法可以轻松地在现有的基于投影的MAR管道中实现,以提高图像质量。该方法可以为准确分割CBCT投影中的金属提供新的范式。
translated by 谷歌翻译
发现采用时间分离技术(TST)的基于模型的重建可以使用C臂锥束计算机断层扫描(CBCT)改善肝脏的动态灌注成像。要使用从CT灌注数据中提取的先验知识应用TST,应从CT扫描中准确分割肝脏。需要对主要和基于模型的CBCT数据进行重建,以正确可视化和解释灌注图。这项研究提出了Turbolift Learning,该学习按照培训CT,CBCT,CBCT,CBCT TST的顺序训练多尺度关注的多尺度注意力,UNET串行序列上的不同肝脏细分任务 - 使先前的培训作为前培训作为预训练阶段的阶段随后的问题 - 解决培训数据集数量有限的问题。对于CBCT TST的肝脏分割的最终任务,提议的方法的总骰子得分为0.874 $ \ pm $ 0.031和0.905 $ \ pm $ \ $ \ $ 0.007,分别为6倍和4倍的交叉验证实验 - 获得统计上显着的改进 - 在模型上,该模型仅接受该任务。实验表明,涡轮增压不仅提高了模型的整体性能,而且还使其与源自栓塞材料和截断物品的人工制品具有稳健性。此外,深入分析确认了分割任务的顺序。本文显示了从CT,CBCT和CBCT TST分割肝脏的潜力,从可用的有限培训数据中学习,将来可能会用于可视化和评估灌注图的肝病评估。 。
translated by 谷歌翻译
In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-na\"ive segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-na\"ive segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-na\"ive segmentation networks (AUC up to 0.874).
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
CT图像中的椎骨定位,分割和识别是众多临床应用的关键。尽管近年来,深度学习策略已为该领域带来了重大改进,但由于其在培训数据集中的代表性不佳,过渡性和病理椎骨仍在困扰大多数现有方法。另外,提出的基于非学习的方法可以利用先验知识来处理这种特定情况。在这项工作中,我们建议将这两种策略结合起来。为此,我们引入了一个迭代循环,在该循环中,单个椎骨被递归地定位,分割和使用深网鉴定,而使用统计先验则实施解剖一致性。在此策略中,通过在图形模型中编码其配置来处理过渡性椎骨识别,该模型将局部深网预测汇总为解剖上一致的最终结果。我们的方法在Verse20挑战基准上取得了最新的结果,并且优于过渡性椎骨的所有方法以及对Verse19挑战基准的概括。此外,我们的方法可以检测和报告不满足解剖学一致性先验的不一致的脊柱区域。我们的代码和模型公开用于研究目的。
translated by 谷歌翻译
Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3D) pulmonary CT images, which we call it Lung-Net. We conjectured that a significant deeper network with inceptionV3 units can achieve a better feature representation of lung CT images without increasing the model complexity in terms of the number of trainable parameters. The method has three main advantages. First, a U-Net architecture with InceptionV3 blocks is developed to resolve the problem of performance degradation and parameter overload. Then, using information from consecutive slices, a new data structure is created to increase generalization potential, allowing more discriminating features to be extracted by making data representation as efficient as possible. Finally, the robustness of the proposed segmentation framework was quantitatively assessed using one public database to train and test the model (LUNA16) and two public databases (ISBI VESSEL12 challenge and CRPF dataset) only for testing the model; each database consists of 700, 23, and 40 CT images, respectively, that were acquired with a different scanner and protocol. Based on the experimental results, the proposed method achieved competitive results over the existing techniques with Dice coefficient of 99.7, 99.1, and 98.8 for LUNA16, VESSEL12, and CRPF datasets, respectively. For segmenting lung tissue in CT images, the proposed model is efficient in terms of time and parameters and outperforms other state-of-the-art methods. Additionally, this model is publicly accessible via a graphical user interface.
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
CT和MRI是两种广泛使用的临床成像方式,用于非侵入性诊断。然而,这两种方式都有一定的问题。 CT使用有害电离辐射,MRI患有缓慢的采集速度。欠采样可以解决这两个问题,例如稀疏抽样。然而,这种向下采样的数据导致降低分辨率并引入人工制品。已经提出了几种技术,包括基于深度的学习方法,以重建此类数据。然而,这两个方式的欠采样重建问题总是被认为是两个不同的问题,并通过不同的研究工作分开解决。本文通过在径向MRI上应用傅立叶变换的预处理来实现稀疏CT和缺口MRI重建的统一解决方案,然后使用SCOMAGE ups采样与滤波后投影结合使用SCOMAGE Cups采样来实现的基于傅里叶变换的预处理。原始网络是一种基于深度学习的方法,用于重建稀疏采样的CT数据。本文介绍了原始 - 双工UNET,从精度和重建速度方面提高了原始双网络。所提出的方法导致平均SSSIM为0.932,同时对风扇束几何进行稀疏CT重建,其稀疏水平为16,实现了对先前模型的统计上显着的改进,这导致0.919。此外,所提出的模型导致0.903和0.957平均SSIM,同时重建具有16-统计上显着改善的加速因子,在原始模型上重建了缺乏采样的脑和腹部MRI数据,这导致0.867和0.949。最后,本文表明,所提出的网络不仅提高了整体图像质量,而且还提高了兴趣区域的图像质量;以及在针的存在下更好地推广。
translated by 谷歌翻译
深度学习技术在检测医学图像中的对象方面取得了成功,但仍然遭受虚假阳性预测,可能会阻碍准确的诊断。神经网络输出的估计不确定性已用于标记不正确的预测。我们研究了来自神经网络不确定性估计的功能和基于形状的特征,这些特征是根据二进制预测计算出的,从二进制预测中,通过开发基于分类的后处理步骤来减少肝病病变检测中的假阳性,以用于不同的不确定性估计方法。我们证明了两个数据集上所有不确定性估计方法的神经网络的病变检测性能(相对于F1分数)的改善,分别包括腹部MR和CT图像。我们表明,根据神经网络不确定性估计计算的功能往往不会有助于降低假阳性。我们的结果表明,诸如阶级不平衡(真实假阳性比率)和从不确定性图提取的基于形状的特征之类的因素在区分假阳性和真实阳性预测方面起着重要作用
translated by 谷歌翻译
大脑的血管为人脑提供所需的营养和氧气。作为大脑血液供应的脆弱部分,小血管的病理可能会引起严重的问题,例如脑小血管疾病(CSVD)。还显示CSVD与神经变性有关,例如阿尔茨海默氏病。随着7个特斯拉MRI系统的发展,可以实现较高的空间图像分辨率,从而使大脑中非常小的血管描绘。非深度学习的方法进行血管分割的方法,例如,弗兰吉的血管增强,随后的阈值能够将培养基分割至大容器,但通常无法分割小血管。这些方法对小容器的敏感性可以通过广泛的参数调整或手动校正来提高,尽管使它们耗时,费力,并且对于较大的数据集而言是不可行的。本文提出了一个深度学习架构,以自动在7特斯拉3D飞行时间(TOF)磁共振血管造影(MRA)数据中自动分割小血管。该算法对仅11个受试者的小型半自动分段数据进行训练和评估;使用六个进行培训,两个进行验证,三个进行测试。基于U-NET多尺度监督的深度学习模型使用训练子集进行了训练,并以一种自我监督的方式使用变形 - 意识到的学习以改善概括性能。针对测试集对拟议的技术进行了定量和定性评估,并获得了80.44 $ \ pm $ 0.83的骰子得分。此外,将所提出的方法的结果与选定的手动分割区域(62.07结果骰子)进行了比较,并通过变形感知的学习显示出显着改善(18.98 \%)。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
我们为Covid-19的快速准确CT(DL-FACT)测试提供了一系列深度学习的计算框架。我们开发了基于CT的DL框架,通过基于DL的CT图像增强和分类来提高Covid-19(加上其变体)的测试速度和准确性。图像增强网络适用于DDNet,短暂的Dennet和基于Deconvolulate的网络。为了展示其速度和准确性,我们在Covid-19 CT图像的几个来源中评估了DL-FARE。我们的结果表明,DL-FACT可以显着缩短几天到几天的周转时间,并提高Covid-19测试精度高达91%。DL-FACT可以用作诊断和监测Covid-19的医学专业人员的软件工具。
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
基准标记通常用于导航辅助微创脊柱手术(Miss),他们帮助将图像坐标转移到现实世界坐标中。在实践中,这些标记可能位于视野(FOV)之外,由于术中手术中使用的C形臂锥形束计算机断层扫描(CBCT)系统的有限检测器尺寸。因此,CBCT体积中的重建标记遭受伪影并且具有扭曲的形状,其设定了导航的障碍。在这项工作中,我们提出了两个基准标记检测方法:直接检测从失真标记(直接方法)和标记恢复后检测(恢复方法)。为了直接检测重构体积中的失真标记,提出了一种使用两个神经网络和传统圆检测算法的有效的自动标记检测方法。对于标记恢复,提出了一种特定于任务的学习策略,以从严重截断的数据中恢复标记。之后,施加传统的标记检测算法用于位置检测。在模拟数据和实际数据上评估这两种方法,两者都可以实现小于0.2mm的标记配准误差。我们的实验表明,直接方法能够准确地检测扭曲的标记,并且具有任务特定学习的恢复方法对各种数据集具有高的鲁棒性和概括性。此外,特定于任务的学习能够准确地重建其他感兴趣的结构结构,例如,用于图像引导针活检的肋骨,来自严重截断的数据,从而使CBCT系统具有新的潜在应用。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译
在核成像中,有限的分辨率会导致影响图像清晰度和定量准确性的部分体积效应(PVE)。已证明来自CT或MRI的高分辨率解剖信息的部分体积校正(PVC)已被证明是有效的。但是,这种解剖学引导的方法通常需要乏味的图像注册和分割步骤。由于缺乏具有高端CT和相关运动伪像的混合体SPECT/CT扫描仪,因此很难获得准确的分段器官模板,尤其是在心脏SPECT成像中。轻微的错误注册/错误分段将导致PVC后的图像质量严重降解。在这项工作中,我们开发了一种基于深度学习的方法,用于快速心脏SPECT PVC,而无需解剖信息和相关的器官分割。所提出的网络涉及密集连接的多维动态机制,即使网络经过充分训练,也可以根据输入图像对卷积内核进行调整。引入了心脏内血容量(IMBV)作为网络优化的附加临床损失函数。提出的网络表明,使用Technetium-99M标记的红细胞在GE发现NM/CT 570C专用心脏SPECT扫描仪上获得的28个犬类研究表现有希望的表现。这项工作表明,与没有这种机制的同一网络相比,具有密集连接的动态机制的提议网络产生了较高的结果。结果还表明,没有解剖信息的提出的网络可以与解剖学引导的PVC方法产生的图像产生具有统计上可比的IMBV测量的图像,这可能有助于临床翻译。
translated by 谷歌翻译
脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译