压缩是许多实际应用的重要任务。尽管以前的工作提出了许多用于有效的光场压缩的方法,但视图选择对此任务的影响并未得到很好的利用。在这项工作中,我们研究了光场压缩的不同子采样和重建策略。我们在光场压缩之前和之后应用各种子采样和相应的重建策略。然后,评估完全重建的光场,以评估不同方法的性能。我们的评估是对现实世界和合成数据集进行的,并且从我们的实验结果中设计出最佳策略。我们希望这项研究将对未来的研究(例如光场流,存储和传输)有益。
translated by 谷歌翻译
光场的传统表示形式可以分为两种类型:显式表示和隐式表示。与将光字段表示为基于子孔图像(SAI)的阵列或微图像(MIS)的透镜图像的明确表示不同,隐式表示将光场视为神经网络,与离散的显式表示相反,这是固有的连续表示。但是,目前,光场的几乎所有隐式表示都利用SAI来训练MLP,以学习从4D空间角坐标到像素颜色的像素映射,这既不紧凑,也不是较低的复杂性。取而代之的是,在本文中,我们提出了Minl,这是一种新型的MI-Wise隐式神经表示,用于训练MLP + CNN,以学习从2D MI坐标到MI颜色的映射。考虑到微图像的坐标,MINL输出相应的微图像的RGB值。 MINL中编码的光场只是训练一个神经网络以回归微图像,而解码过程是一个简单的前馈操作。与普通像素的隐式表示相比,MINL更加紧凑,更高效,具有更快的解码速度(\ textbf {$ \ times $ 80 $ \ sim $ 180}加速)以及更好的视觉质量(\ textbf {1 $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SIM $ 4DB} PSNR平均改进)。
translated by 谷歌翻译
新兴和现有的灯场显示器非常能够在无自动镜玻璃平台上对3D场景进行现实呈现。在利用3D显示和流式传输目的的同时,光场大小是主要缺点。当光场具有高动态范围时,大小会大大增加。在本文中,我们为高动态范围光场提出了一种新型的压缩算法,该算法具有感知的无损压缩。该算法通过将其解释为四维体积来利用HDR光场的间和内部视图相关性。 HDR光场压缩基于一种新型的4DDCT-UCS(4D-DCT均匀颜色空间)算法。 HEVC通过HEVC获取的4DDCT-UCS获取图像的其他编码消除了HDR光场数据中的框内,框架间和内在冗余。与JPEG-XL和HDR视频编码算法等最新编码器的比较表现出对现实世界光场提出的方案的卓越压缩性能。
translated by 谷歌翻译
在光场压缩中,基于图的编码功能强大,可以利用沿着不规则形状的信号冗余并获得良好的能量压实。然而,除了高度复杂性到处理高维图外,它们的图形构造方法对观点之间的差异信息的准确性非常敏感。在计算机软件生成的现实世界光场或合成光场中,由于渐晕效果和两种类型的光场视图之间的视图之间的巨大差异,将视差信息用于超射线投影可能会遭受不准确性。本文介绍了两种新型投影方案,导致差异信息的错误较小,其中一个投影方案还可以显着降低编码器和解码器的时间计算。实验结果表明,与原始投影方案和基于HEVC或基于JPEG PLENO的编码方法相比,使用这些建议可以大大增强超级像素的投影质量,以及率延伸性能。
translated by 谷歌翻译
Fast and easy handheld capture with guideline: closest object moves at most D pixels between views Promote sampled views to local light field via layered scene representation Blend neighboring local light fields to render novel views
translated by 谷歌翻译
本文旨在去除从稀疏 - 采样{4d}光场产生的整个焦点堆的锯齿效果,同时保持所有焦层的一致性。我们首先探讨侧侧侧叠层切片的结构特征及其相应的频域表示,即焦堆谱(FSS)。我们观察到,FSS的能量分布总是在不同的角度采样率下驻留在相同的三角形区域内,另外,点扩展功能(PSF)的连续性在FSS中固有地保持。基于这两种观察,我们提出了一种基于学习的FSS重建方法,用于在整个焦点堆叠上移除一次性混叠。此外,提出了一种新的共轭 - 对称损失函数来优化。与以前的作品相比,我们的方法避免了明确的深度估计,并且可以处理具有挑战性的大差异方案。合成和真实光场数据集的实验结果显示了不同场景和各种角度采样率的提出方法的优势。
translated by 谷歌翻译
在本文中,我们提出了一个几何感知的神经插值(GEO-NI),用于光场渲染。以前的基于学习的方法要么依赖于神经网络执行直接插值的能力,因此我们将其称为神经插值(NI),或者探索用于新型视图合成的场景几何形状,也称为基于深度图像的渲染(Dibr)。取而代之的是,我们通过使用新颖的Dibr管道来启动NI来结合这两种方法背后的想法。具体而言,提出的GEO-NI首先使用一组深度假设剪切的输入光场执行NI。然后,通过根据不同深度假设下的重建质量分配新的重建成本量来通过分配新的重建成本量来实现DIBR。重建成本被解释为通过沿深度假设的尺寸混合重建的光场来呈现最终输出光场的混合重量。通过结合Ni和Dibr的优势,拟议的Geo-Ni能够在场景几何形状的帮助下以巨大的差异来呈现视图,同时当深度容易含糊不清时,同时还可以重建非斜角效应。各种数据集上的广泛实验证明了所提出的几何感光光场渲染框架的出色性能。
translated by 谷歌翻译
Image compression is a fundamental research field and many well-known compression standards have been developed for many decades. Recently, learned compression methods exhibit a fast development trend with promising results. However, there is still a performance gap between learned compression algorithms and reigning compression standards, especially in terms of widely used PSNR metric. In this paper, we explore the remaining redundancy of recent learned compression algorithms. We have found accurate entropy models for rate estimation largely affect the optimization of network parameters and thus affect the rate-distortion performance. Therefore, in this paper, we propose to use discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes, which can achieve a more accurate and flexible entropy model. Besides, we take advantage of recent attention modules and incorporate them into network architecture to enhance the performance. Experimental results demonstrate our proposed method achieves a state-of-the-art performance compared to existing learned compression methods on both Kodak and high-resolution datasets. To our knowledge our approach is the first work to achieve comparable performance with latest compression standard Versatile Video Coding (VVC) regarding PSNR. More importantly, our approach generates more visually pleasant results when optimized by MS-SSIM. The project page is at https://github.com/ZhengxueCheng/ Learned-Image-Compression-with-GMM-and-Attention.
translated by 谷歌翻译
我们使用氚(DPICT)算法提出了深度渐进的图像压缩,该算法是支持细粒度可扩展性(FGS)的第一学习的编解码器。首先,我们使用分析网络将图像转换为潜在的张量。然后,我们代表三元数字中的潜在张量(氚),并通过氚平面将其以减少的意义顺序编码为压缩比特流慢平面。此外,在每个氚平面内,我们根据其速率失真优先级对速度进行排序,并首先传输更重要的信息。由于压缩网络对使用更少的氚平面的情况较少优化,因此我们开发了用于以低速率精炼重建图像的后处理网络。实验结果表明,DPICT显着优于传统的渐进式编解码器,同时实现FGS传输。
translated by 谷歌翻译
Recently, many neural network-based image compression methods have shown promising results superior to the existing tool-based conventional codecs. However, most of them are often trained as separate models for different target bit rates, thus increasing the model complexity. Therefore, several studies have been conducted for learned compression that supports variable rates with single models, but they require additional network modules, layers, or inputs that often lead to complexity overhead, or do not provide sufficient coding efficiency. In this paper, we firstly propose a selective compression method that partially encodes the latent representations in a fully generalized manner for deep learning-based variable-rate image compression. The proposed method adaptively determines essential representation elements for compression of different target quality levels. For this, we first generate a 3D importance map as the nature of input content to represent the underlying importance of the representation elements. The 3D importance map is then adjusted for different target quality levels using importance adjustment curves. The adjusted 3D importance map is finally converted into a 3D binary mask to determine the essential representation elements for compression. The proposed method can be easily integrated with the existing compression models with a negligible amount of overhead increase. Our method can also enable continuously variable-rate compression via simple interpolation of the importance adjustment curves among different quality levels. The extensive experimental results show that the proposed method can achieve comparable compression efficiency as those of the separately trained reference compression models and can reduce decoding time owing to the selective compression. The sample codes are publicly available at https://github.com/JooyoungLeeETRI/SCR.
translated by 谷歌翻译
捕获场景的空间和角度信息的光场(LF)成像无疑是有利于许多应用。尽管已经提出了用于LF采集的各种技术,但是在角度和空间上实现的既仍然是技术挑战。本文,提出了一种基于学习的方法,其应用于3D末面图像(EPI)以重建高分辨率LF。通过2级超分辨率框架,所提出的方法有效地解决了各种LF超分辨率(SR)问题,即空间SR,Angular SR和角空间SR。虽然第一阶段向Up-Sample EPI体积提供灵活的选择,但是由新型EPI体积的细化网络(EVRN)组成的第二阶段,基本上提高了高分辨率EPI体积的质量。从7个发布的数据集的90个挑战合成和实际灯田场景的广泛评估表明,所提出的方法优于空间和角度超分辨率问题的大型延伸的最先进的方法,即平均值峰值信号到噪声比为2.0 dB,1.4 dB和3.14 dB的空间SR $ \ Times 2 $,Spatial SR $ \ Times 4 $和Angular SR。重建的4D光场展示了所有透视图像的平衡性能分布,与先前的作品相比,卓越的视觉质量。
translated by 谷歌翻译
当涉及数码相机中的图像压缩时,传统上是在压缩之前执行的。但是,在某些应用中,可能需要进行图像噪声来证明图像的可信度,例如法院证据和图像取证。这意味着除干净的图像本身外,还需要编码噪声本身。在本文中,我们提出了一个基于学习的图像压缩框架,在该框架中共同执行图像denoising和压缩。图像编解码器的潜在空间以可扩展的方式组织,以便可以从潜在空间的子集(基础层)中解码清洁图像,而嘈杂的图像则以较高的速率从完整的潜在空间解码。使用潜在空间的子集作为剥落图像,可以以较低的速率进行deno。除了提供嘈杂的输入图像的可扩展表示外,用压缩共同执行deno,这是直观的意义,因为噪声很难压缩;因此,可压缩性是可能有助于区分信号的标准之一。将提出的编解码器与已建立的压缩和降解基准进行了比较,并且与最先进的编解码器和最先进的Denoiser的级联组合相比,实验显示了大量的比特率节省。
translated by 谷歌翻译
在本文中,我们提出了一种基于量化的蒸馏式低级神经辐射场(QDLR-NERF)表示的新型光场压缩方法。当现有的压缩方法编码光场子孔径图像集时,我们提出的方法以神经辐射场(NERF)的形式学习了隐式场景表示,这也可以使视图合成。为了降低其大小,该模型首先是在低级(LR)约束下使用张量列(TT)分解以交替的乘数(ADMM)优化框架进行的。为了进一步降低模型尺寸,需要量化张量列车分解的组件。但是,通过同时考虑低等级约束并考虑到速率受限的权重量化来实现NERF模型的优化是具有挑战性的。为了解决这个困难,我们引入了一个网络蒸馏操作,该操作将低级近似值和网络训练中的权重量化分开。根据LR-NERF的TT分解,将初始LR约束NERF(LR-NERF)的信息提炼为较小尺寸(DLR-NERF)的模型。然后,学会了优化的全局代码簿来量化所有TT组件,从而产生最终的QDLRNERF。实验结果表明,与最先进的方法相比,我们所提出的方法具有更好的压缩效率,并且还具有允许允许具有高质量的任何光场视图的合成。
translated by 谷歌翻译
由于智能手机摄像机中配备了相对较小的传感器,通常在当今捕获的图像中通常存在高噪声,在这种情况下,噪声带来了有损图像压缩算法的额外挑战。如果没有能力分辨图像细节和噪声之间的差异,一般图像压缩方法分配了其他位,以在压缩过程中明确存储不需要的图像噪声,并在减压期间恢复不愉快的嘈杂图像。基于观察结果,我们优化图像压缩算法是噪声吸引的,因为关节降解和压缩以解决位不当分配问题。关键是要通过消除压缩过程中的不希望的噪声来将原始噪声图像转换为无噪声的位,以后将其作为干净的图像解压缩。具体而言,我们提出了一种新型的两分支,重量分担的架构,并具有插件功能Denoisers,以允许在几乎没有计算成本的情况下简单有效地实现目标。实验结果表明,我们的方法对合成数据集和现实数据集的现有基线方法有了显着改进。我们的源代码可从https://github.com/felixcheng97/denoisecompression获得。
translated by 谷歌翻译
Cone beam computed tomography (CBCT) has been widely used in clinical practice, especially in dental clinics, while the radiation dose of X-rays when capturing has been a long concern in CBCT imaging. Several research works have been proposed to reconstruct high-quality CBCT images from sparse-view 2D projections, but the current state-of-the-arts suffer from artifacts and the lack of fine details. In this paper, we propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields, where we have invented a novel view augmentation strategy to overcome the challenges introduced by insufficient data from sparse input views. Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views (25 times fewer than clinical collections), which outperforms the state-of-the-arts. We have further conducted comprehensive experiments and ablation analysis to validate the effectiveness of our approach.
translated by 谷歌翻译
Neural fields, also known as coordinate-based or implicit neural representations, have shown a remarkable capability of representing, generating, and manipulating various forms of signals. For video representations, however, mapping pixel-wise coordinates to RGB colors has shown relatively low compression performance and slow convergence and inference speed. Frame-wise video representation, which maps a temporal coordinate to its entire frame, has recently emerged as an alternative method to represent videos, improving compression rates and encoding speed. While promising, it has still failed to reach the performance of state-of-the-art video compression algorithms. In this work, we propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos inspired by the standard video codecs. Furthermore, we introduce a fully convolutional architecture, enabled by one-dimensional temporal grids, improving the continuity of spatial features. Experimental results show that FFNeRV yields the best performance for video compression and frame interpolation among the methods using frame-wise representations or neural fields. To reduce the model size even further, we devise a more compact convolutional architecture using the group and pointwise convolutions. With model compression techniques, including quantization-aware training and entropy coding, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
translated by 谷歌翻译
基于学习的方法有效地促进了图像压缩社区。同时,基于变异的自动编码器(VAE)的可变速率方法最近引起了很多关注,以避免使用一组不同的网络来用于各种压缩率。尽管已经取得了显着的性能,但一旦执行了多个压缩/减压操作,这些方法将很容易损坏,从而导致图像质量将被大幅下降并且会出现强大的伪像。因此,我们试图解决高保真的细度可变速率图像压缩的问题,并提出可逆激活变换(IAT)模块。我们以单个速率可逆神经网络(INN)模型(Qlevel)以数学可逆的方式实施IAT,并将质量级别(QLevel)送入IAT,以产生缩放和偏置张量。 IAT和QLEVEL一起为图像压缩模型提供了罚款可变速率控制的能力,同时更好地保持图像保真度。广泛的实验表明,配备了我们IAT模块的单率图像压缩模型具有实现可变速率控制而无需任何妥协的能力。并且我们的IAT包裹模型通过最新的基于学习的图像压缩方法获得了可比的利率延伸性能。此外,我们的方法的表现优于最新的可变速率图像压缩方法,尤其是在多次重新编码之后。
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
我们探索了基于神经光场表示的几种新颖观点合成的新策略。给定目标摄像头姿势,隐式神经网络将每个射线映射到其目标像素的颜色。该网络的条件是根据来自显式3D特征量的粗量渲染产生的本地射线特征。该卷是由使用3D Convnet的输入图像构建的。我们的方法在基于最先进的神经辐射场竞争方面,在合成和真实MVS数据上实现了竞争性能,同时提供了100倍的渲染速度。
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译