Neural fields, also known as coordinate-based or implicit neural representations, have shown a remarkable capability of representing, generating, and manipulating various forms of signals. For video representations, however, mapping pixel-wise coordinates to RGB colors has shown relatively low compression performance and slow convergence and inference speed. Frame-wise video representation, which maps a temporal coordinate to its entire frame, has recently emerged as an alternative method to represent videos, improving compression rates and encoding speed. While promising, it has still failed to reach the performance of state-of-the-art video compression algorithms. In this work, we propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos inspired by the standard video codecs. Furthermore, we introduce a fully convolutional architecture, enabled by one-dimensional temporal grids, improving the continuity of spatial features. Experimental results show that FFNeRV yields the best performance for video compression and frame interpolation among the methods using frame-wise representations or neural fields. To reduce the model size even further, we devise a more compact convolutional architecture using the group and pointwise convolutions. With model compression techniques, including quantization-aware training and entropy coding, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
translated by 谷歌翻译
隐式神经表示(INR)被出现为代表信号的强大范例,例如图像,视频,3D形状等。尽管它已经示出了能够表示精细细节的能力,但其效率尚未得到广泛研究数据表示。在INR中,数据以神经网络的参数的形式存储,并且通用优化算法通常不会利用信号中的空间和时间冗余。在本文中,我们建议通过明确地删除数据冗余来表示和压缩视频的新型INR方法。我们提出了跨视频帧和残差的主体剩余流场(NRFF)而不是存储原始RGB颜色,而不是存储原始RGB颜色。维护通常更光滑和更复杂的运动信息,比原始信号更少,需要更少的参数。此外,重用冗余像素值进一步提高了网络参数效率。实验结果表明,所提出的方法优于基线方法的显着边际。代码可用于https://github.com/daniel03c1/eff_video_repruseentation。
translated by 谷歌翻译
我们研究如何代表具有隐式神经表示(INRS)的视频。经典INRS方法通常利用MLP将输入坐标映射到输出像素。尽管最近的一些作品试图直接使用CNN重建整个图像。但是,我们认为,以上像素和图像策略都不利于视频数据。取而代之的是,我们提出了一个贴片解决方案PS-NERV,该解决方案将视频表示为贴片的函数和相应的补丁坐标。它自然继承了图像方法的优势,并以快速解码速度实现出色的重建性能。整个方法包括常规模块,例如位置嵌入,MLP和CNN,同时还引入了ADAIN以增强中间特征。这些简单而基本的更改可以帮助网络轻松拟合高频细节。广泛的实验证明了其在几个与视频有关的任务中的有效性,例如视频压缩和视频介绍。
translated by 谷歌翻译
我们提出了一种压缩具有隐式神经表示的全分辨率视频序列的方法。每个帧表示为映射坐标位置到像素值的神经网络。我们使用单独的隐式网络来调制坐标输入,从而实现帧之间的有效运动补偿。与一个小的残余网络一起,这允许我们有效地相对于前一帧压缩p帧。通过使用学习的整数量化存储网络权重,我们进一步降低了比特率。我们呼叫隐式像素流(IPF)的方法,提供了几种超简化的既定神经视频编解码器:它不需要接收器可以访问预先磨普的神经网络,不使用昂贵的内插基翘曲操作,而不是需要单独的培训数据集。我们展示了神经隐式压缩对图像和视频数据的可行性。
translated by 谷歌翻译
最近,与常规像素的隐性表示相比,视频的图像隐式神经表示,其有希望的结果和迅速的速度因其有希望的结果和迅速的速度而受欢迎。但是,网络结构内的冗余参数在扩大理想性能时会导致大型模型大小。这种现象的关键原因是神经的耦合公式,该公式直接从框架索引输入中输出视频帧的空间和时间信息。在本文中,我们提出了E-NERV,它通过将图像的隐式神经代表分解为单独的空间和时间上下文来显着加快神经的速度。在这种新公式的指导下,我们的模型大大降低了冗余模型参数,同时保留表示能力。我们从实验上发现,我们的方法可以通过更少的参数改善性能,从而使收敛的速度更快地提高了$ 8 \ times $。代码可在https://github.com/kyleleey/e-nerv上找到。
translated by 谷歌翻译
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
translated by 谷歌翻译
学习的视频压缩方法在赶上其速率 - 失真(R-D)性能时,追赶传统视频编解码器的许多承诺。然而,现有的学习视频压缩方案受预测模式和固定网络框架的绑定限制。它们无法支持各种帧间预测模式,从而不适用于各种场景。在本文中,为了打破这种限制,我们提出了一种多功能学习的视频压缩(VLVC)框架,它使用一个模型来支持所有可能的预测模式。具体而言,为了实现多功能压缩,我们首先构建一个运动补偿模块,该模块应用用于在空间空间中的加权三线性翘曲的多个3D运动矢量字段(即,Voxel流量)。 Voxel流量传达了时间参考位置的信息,有助于与框架设计中的帧间预测模式分离。其次,在多参考帧预测的情况下,我们应用流预测模块以预测具有统一多项式函数的准确运动轨迹。我们表明流量预测模块可以大大降低体素流的传输成本。实验结果表明,我们提出的VLVC不仅支持各种设置中的多功能压缩,而且还通过MS-SSIM的最新VVC标准实现了可比的R-D性能。
translated by 谷歌翻译
视频通常将流和连续的视觉数据记录为离散的连续帧。由于存储成本对于高保真度的视频来说是昂贵的,因此大多数存储以相对较低的分辨率和帧速率存储。最新的时空视频超分辨率(STVSR)的工作是开发出来的,以将时间插值和空间超分辨率纳入统一框架。但是,其中大多数仅支持固定的上采样量表,这限制了其灵活性和应用。在这项工作中,我们没有遵循离散表示,我们提出了视频隐式神经表示(videoinr),并显示了其对STVSR的应用。学到的隐式神经表示可以解码为任意空间分辨率和帧速率的视频。我们表明,Videoinr在常见的上采样量表上使用最先进的STVSR方法实现了竞争性能,并且在连续和训练的分布量表上显着优于先前的作品。我们的项目页面位于http://zeyuan-chen.com/videoinr/。
translated by 谷歌翻译
学习的视频压缩最近成为开发高级视频压缩技术的重要研究主题,其中运动补偿被认为是最具挑战性的问题之一。在本文中,我们通过异质变形补偿策略(HDCVC)提出了一个学识渊博的视频压缩框架,以解决由单尺度可变形的特征域中单尺可变形核引起的不稳定压缩性能的问题。更具体地说,所提出的算法提取物从两个相邻框架中提取的算法提取物特征来估算估计内容自适应的异质变形(Hetdeform)内核偏移量,而不是利用光流或单尺内核变形对齐。然后,我们将参考特征转换为HetDeform卷积以完成运动补偿。此外,我们设计了一个空间 - 邻化的分裂归一化(SNCDN),以实现更有效的数据高斯化结合了广义分裂的归一化。此外,我们提出了一个多框架增强的重建模块,用于利用上下文和时间信息以提高质量。实验结果表明,HDCVC比最近最新学习的视频压缩方法取得了优越的性能。
translated by 谷歌翻译
Neural radiance fields (NeRF) have demonstrated the potential of coordinate-based neural representation (neural fields or implicit neural representation) in neural rendering. However, using a multi-layer perceptron (MLP) to represent a 3D scene or object requires enormous computational resources and time. There have been recent studies on how to reduce these computational inefficiencies by using additional data structures, such as grids or trees. Despite the promising performance, the explicit data structure necessitates a substantial amount of memory. In this work, we present a method to reduce the size without compromising the advantages of having additional data structures. In detail, we propose using the wavelet transform on grid-based neural fields. Grid-based neural fields are for fast convergence, and the wavelet transform, whose efficiency has been demonstrated in high-performance standard codecs, is to improve the parameter efficiency of grids. Furthermore, in order to achieve a higher sparsity of grid coefficients while maintaining reconstruction quality, we present a novel trainable masking approach. Experimental results demonstrate that non-spatial grid coefficients, such as wavelet coefficients, are capable of attaining a higher level of sparsity than spatial grid coefficients, resulting in a more compact representation. With our proposed mask and compression pipeline, we achieved state-of-the-art performance within a memory budget of 2 MB. Our code is available at https://github.com/daniel03c1/masked_wavelet_nerf.
translated by 谷歌翻译
神经领域已成为一种新的数据表示范式,并在各种信号表示中表现出了显着的成功。由于它们在网络参数中保留信号,因此通过发送和接收整个模型参数来传输数据传输,可以防止在许多实际情况下使用这种新兴技术。我们提出了流媒体神经场,这是一个由各种宽度的可执行子网络组成的单个模型。拟议的建筑和培训技术使一个网络能够随着时间的流逝而流式传输,并重建不同的素质和一部分信号。例如,较小的子网络会产生光滑和低频信号,而较大的子网络可以代表细节。实验结果显示了我们方法在各个域中的有效性,例如2D图像,视频和3D签名的距离函数。最后,我们证明我们提出的方法通过利用参数共享来提高培训稳定性。
translated by 谷歌翻译
Conventional video compression approaches use the predictive coding architecture and encode the corresponding motion information and residual information. In this paper, taking advantage of both classical architecture in the conventional video compression method and the powerful nonlinear representation ability of neural networks, we propose the first end-to-end video compression deep model that jointly optimizes all the components for video compression. Specifically, learning based optical flow estimation is utilized to obtain the motion information and reconstruct the current frames. Then we employ two auto-encoder style neural networks to compress the corresponding motion and residual information. All the modules are jointly learned through a single loss function, in which they collaborate with each other by considering the trade-off between reducing the number of compression bits and improving quality of the decoded video. Experimental results show that the proposed approach can outperform the widely used video coding standard H.264 in terms of PSNR and be even on par with the latest standard H.265 in terms of MS-SSIM. Code is released at https://github.com/GuoLusjtu/DVC. * Corresponding author (a) Original frame (Bpp/MS-SSIM) (b) H.264 (0.0540Bpp/0.945) (c) H.265 (0.082Bpp/0.960) (d) Ours ( 0.0529Bpp/ 0.961
translated by 谷歌翻译
标量和矢量场的神经近似(例如签名距离函数和辐射场)已成为准确的高质量表示。最先进的结果是通过从可训练的特征网格中进行查找的调节来获得的,这些近似是按照学习任务的一部分,并允许较小,更有效的神经网络。不幸的是,与独立的神经网络模型相比,这些特征网格通常以明显增加的记忆消耗成本。我们提出了一种词典方法,用于压缩此类特征网格,将其内存消耗降低至100倍,并允许多分辨率表示,这对于核心外流很有用。我们将词典优化作为矢量定量的自动码头问题提出,使我们能够在没有直接监督以及具有动态拓扑和结构的空间中学习端到端离散的神经表示。我们的源代码将在https://github.com/nv-tlabs/vqad上找到。
translated by 谷歌翻译
对于神经视频编解码器,设计有效的熵模型至关重要但又具有挑战性,该模型可以准确预测量化潜在表示的概率分布。但是,大多数现有的视频编解码器直接使用图像编解码器的现成的熵模型来编码残差或运动,并且不会完全利用视频中的时空特性。为此,本文提出了一个强大的熵模型,该模型有效地捕获了空间和时间依赖性。特别是,我们介绍了潜在的先验,这些先验利用了潜在表示之间的相关性来挤压时间冗余。同时,提出了双重空间先验,以平行友好的方式降低空间冗余。此外,我们的熵模型也是通用的。除了估计概率分布外,我们的熵模型还在空间通道上生成量化步骤。这种内容自适应的量化机制不仅有助于我们的编解码器在单个模型中实现平滑的速率调整,而且还通过动态位分配来改善最终速率延伸性能。实验结果表明,与H.266(VTM)相比,使用最高的压缩率配置,我们的神经编解码器在提出的熵模型中,我们的神经编解码器可以在UVG数据集上节省18.2%的比特率。它在神经视频编解码器的开发中是一个新的里程碑。这些代码在https://github.com/microsoft/dcvc上。
translated by 谷歌翻译
传统的视频压缩(VC)方法基于运动补偿变换编码,并且由于端到端优化问题的组合性质,运动估计,模式和量化参数选择的步骤和熵编码是单独优化的。学习VC允许同时对端到端速率失真(R-D)优化非线性变换,运动和熵模型的优化训练。大多数工作都在学习VC基于R-D损耗对连续帧的对考虑连续视频编解码器的端到端优化。它在传统的VC中众所周知的是,双向编码优于顺序压缩,因为它能够使用过去和未来的参考帧。本文提出了一种学习的分层双向视频编解码器(LHBDC),其结合了分层运动补偿预测和端到端优化的益处。实验结果表明,我们达到了迄今为​​止在PSNR和MS-SSIM中的学习VC方案报告的最佳R-D结果。与传统的视频编解码器相比,我们的端到端优化编解码器的RD性能优于PSNR和MS-SSIM中的X265和SVT-HEVC编码器(“非常流”预设)以及MS-中的HM 16.23参考软件。 SSIM。我们提出了由于所提出的新颖工具,例如学习屏蔽,流场附带和时间流量矢量预测等新颖工具,展示了表现出性能提升。重现我们结果的模型和说明可以在https://github.com/makinyilmaz/lhbdc/中找到
translated by 谷歌翻译
基于DNN的框架插值从两个连续的帧中生成中间帧,通常取决于具有大量功能的模型体系结构,从而阻止其在具有有限资源的系统(例如移动设备)上部署。我们提出了一种用于框架插值的压缩驱动的网络设计,该设计通过稀疏性诱导优化来利用模型,以大大降低模型大小,同时达到更高的性能。具体而言,我们首先压缩了最近提出的ADACOF模型,并证明了10次压缩ADACOF的性能类似于其原始对应物,在各种超参数设置下,对使用layerwise稀疏信息作为指导的不同策略进行了全面研究。然后,我们通过引入一个多分辨率翘曲模块来增强这种压缩模型,从而提高了视觉一致性,并通过多层次的细节来提高视觉一致性。结果,我们通过原始AdaCof的四分之一获得了可观的性能增长。此外,我们的模型在各种数据集上对其他最先进的方法都表现出色。我们注意到,建议的压缩驱动框​​架是通用的,可以轻松地传输到其他基于DNN的框架插值算法中。源代码可在https://github.com/tding1/cdfi上获得。
translated by 谷歌翻译
我们地址结束学习视频压缩,特别关注更好地学习和利用时间上下文。对于时间上下文挖掘,我们建议不仅存储先前重建的帧,还可以存储到广义解码图像缓冲器中的传播功能。从存储的传播功能中,我们建议学习多尺度的时间上下文,并将学习的时间上下文重新填充到压缩方案的模块中,包括上下文编码器 - 解码器,帧生成器和时间上下文编码器。我们的计划丢弃了并行化 - 不友好的自动回归熵模型,以追求更实用的解码时间。我们将我们的计划与X264和X265(分别代表H.264和H.265的工业软件)以及H.264,H.265和H.266(JM,HM和VTM的官方参考软件(JM,HM和VTM)进行比较, 分别)。当周期为32次并定向为PSNR时,我们的方案优于H.265 - HM以14.4%的比特率储蓄;当取向MS-SSIM时,我们的方案优于21.1%比特率保存的H.266 - VTM。
translated by 谷歌翻译
在本文中,我们介绍了第一个神经视频编解码器,可以在用于低延迟模式的UVG数据集上的SRGB PSNR方面与最新编码标准H.266 / VVC竞争。现有的神经混合视频编码方法依赖于用于预测的光流或高斯尺度流,这不能支持对不同运动内容的细粒度适应性。为了更具内容 - 自适应预测,我们提出了一种新颖的跨尺度预测模块,实现更有效的运动补偿。具体地,一方面,我们生产参考特征金字塔作为预测源,然后传输利用特征尺度的横级流来控制预测的精度。另一方面,我们将加权预测的机制介绍到具有单个参考帧的预测场景的机制,其中发送交叉尺度权重映射以合成精细预测结果。除了串尺度预测模块之外,我们还提出了一种多级量化策略,这提高了在推理期间没有额外计算惩罚的速率失真性能。我们展示了我们有效的神经视频编解码器(ENVC)对几个常见的基准数据集的令人鼓舞的表现,并详细分析了每个重要组成部分的有效性。
translated by 谷歌翻译
数据冗余在深神经网络(DNN)的输入和中间结果中无处不在。它为提高DNN性能和效率提供了许多重要的机会,并在大量工作中探索了。这些研究在几年中都在许多场所散布。他们关注的目标范围从图像到视频和文本,以及他们用于检测和利用数据冗余的技术在许多方面也有所不同。尚无对许多努力进行系统的检查和摘要,使研究人员很难对先前的工作,最新技术,差异和共享原则以及尚未探索的领域和方向进行全面看法。本文试图填补空白。它调查了有关该主题的数百篇论文,引入了一种新颖的分类法,以将各种技术纳入一个单一的分类框架,对用于利用数据冗余的主要方法进行了全面描述,以改善数据的多种DNN,并指出一组未来探索的研究机会。
translated by 谷歌翻译
本文基于条件增强归一化流(ANF),介绍了一种基于端到端的学习视频压缩系统,称为CANF-VC。大多数博学的视频压缩系统采用与传统编解码器相同的基于混合的编码体系结构。关于条件编码的最新研究表明,基于混合的编码的亚地区,并为深层生成模型打开了在创建新编码框架中发挥关键作用的机会。 CANF-VC代表了一种新的尝试,该尝试利用条件ANF学习有条件框架间编码的视频生成模型。我们之所以选择ANF,是因为它是一种特殊类型的生成模型,其中包括各种自动编码器作为一种特殊情况,并且能够获得更好的表现力。 CANF-VC还将条件编码的想法扩展到运动编码,形成纯粹的条件编码框架。对常用数据集的广泛实验结果证实了CANF-VC对最新方法的优越性。
translated by 谷歌翻译