联合分析是一种流行的实验设计,用于测量多维偏好。研究人员研究了在控制其他相关因素的同时如何影响决策。当前,存在两种方法学方法来分析联合实验的数据。第一个重点是估计每个因素的平均边际效应,同时平均其他因素。尽管这允许基于直接设计的估计,但结果严重取决于其他因素的分布以及相互作用效应的汇总方式。一种基于模型的替代方法可以计算各种兴趣,但要求研究人员正确指定模型,这是与许多因素和可能的相互作用的联合分析的挑战性任务。此外,在合并相互作用时,常用的逻辑回归即使具有适度的因素,统计特性也很差。我们提出了一种基于条件随机测试的新假设检验方法,以回答联合分析的最基本问题:考虑到其他因素,感兴趣的因素是否重要?我们的方法仅基于因素的随机化,因此没有假设。但是,它允许研究人员使用任何测试统计量,包括基于复杂的机器学习算法的统计量。结果,我们能够结合现有的基于设计和基于模型的方法的优势。我们通过对移民偏好和政治候选评估的联合分析来说明拟议的方法。我们还扩展了提出的方法来测试联合分析中常用的规律性假设。可以使用开源软件包来实施建议的方法。
translated by 谷歌翻译
在本文中,我们提出了一种非参数估计的方法,并推断了一般样本选择模型中因果效应参数的异质界限,初始治疗可能会影响干预后结果是否观察到。可观察到的协变量可能会混淆治疗选择,而观察结果和不可观察的结果可能会混淆。该方法提供条件效应界限作为策略相关的预处理变量的功能。它允许对身份不明的条件效应曲线进行有效的统计推断。我们使用灵活的半参数脱偏机学习方法,该方法可以适应柔性功能形式和治疗,选择和结果过程之间的高维混杂变量。还提供了易于验证的高级条件,以进行估计和错误指定的鲁棒推理保证。
translated by 谷歌翻译
为了进一步开发异构治疗效果的统计推理问题,本文在Breiman(2001)随机林树(RFT)和Wager等人的情况下建立了使用古典的优秀统计属性来参数化非参数问题的(2018)因果树。oLs和基于协变量分数的局部线性间隔的划分,同时保留随机林树木,具有可构造的置信区间和渐近常数特性的优势[athey和Imbens(2016),efron(2014),赌第等(2014年)\ citep {wagert2014Asymptotic},我们根据固定规则提出了一个决策树,根据固定规则与本地样本的多项式估计相结合,我们称之为临时局部线性因果树(QLPRT)和林(QLPRF)。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
我们提出了一个程序,该程序将层次聚类与从一组大型IV中选择有效仪器变量(IV)的限制的测试结合在一起。其中一些可能是无效的,因为它们未通过排除限制。我们表明,如果最大的IV组有效,我们的方法就可以实现Oracle属性。与现有技术不同,我们的工作涉及多个内源回归器,较弱的仪器,异质效应和几乎有效性。在模拟中,我们的过程优于硬阈值和置信区间方法。该方法适用于估计移民对工资和教育回报的影响。
translated by 谷歌翻译
在制定政策指南时,随机对照试验(RCT)代表了黄金标准。但是,RCT通常是狭窄的,并且缺乏更广泛的感兴趣人群的数据。这些人群中的因果效应通常是使用观察数据集估算的,这可能会遭受未观察到的混杂和选择偏见。考虑到一组观察估计(例如,来自多项研究),我们提出了一个试图拒绝偏见的观察性估计值的元偏值。我们使用验证效应,可以从RCT和观察数据中推断出的因果效应。在拒绝未通过此测试的估计器之后,我们对RCT中未观察到的亚组的外推性效应产生了保守的置信区间。假设至少一个观察估计量在验证和外推效果方面是渐近正常且一致的,我们为我们算法输出的间隔的覆盖率概率提供了保证。为了促进在跨数据集的因果效应运输的设置中,我们给出的条件下,即使使用灵活的机器学习方法用于估计滋扰参数,群体平均治疗效应的双重稳定估计值也是渐近的正常。我们说明了方法在半合成和现实世界数据集上的特性,并表明它与标准的荟萃分析技术相比。
translated by 谷歌翻译
统计推断中的主要范式取决于I.I.D.的结构。来自假设的无限人群的数据。尽管它取得了成功,但在复杂的数据结构下,即使在清楚无限人口所代表的内容的情况下,该框架在复杂的数据结构下仍然不灵活。在本文中,我们探讨了一个替代框架,在该框架中,推断只是对模型误差的不变性假设,例如交换性或符号对称性。作为解决这个不变推理问题的一般方法,我们提出了一个基于随机的过程。我们证明了该过程的渐近有效性的一般条件,并在许多数据结构中说明了,包括单向和双向布局中的群集误差。我们发现,通过残差随机化的不变推断具有三个吸引人的属性:(1)在弱且可解释的条件下是有效的,可以解决重型数据,有限聚类甚至一些高维设置的问题。 (2)它在有限样品中是可靠的,因为它不依赖经典渐近学所需的规律性条件。 (3)它以适应数据结构的统一方式解决了推断问题。另一方面,诸如OLS或Bootstrap之类的经典程序以I.I.D.为前提。结构,只要实际问题结构不同,就需要修改。经典框架中的这种不匹配导致了多种可靠的误差技术和自举变体,这些变体经常混淆应用研究。我们通过广泛的经验评估证实了这些发现。残留随机化对许多替代方案的表现有利,包括可靠的误差方法,自举变体和分层模型。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
估算随机实验的因果效应是临床研究的核心。降低这些分析中的统计不确定性是统计学家的重要目标。注册管理机构,事先审判和健康记录构成了对患者的历史数据汇编,其在可能是可利用至此的患者下的历史数据。但是,大多数历史借贷方法通过牺牲严格的I型错误率控制来达到方差的减少。在这里,我们建议使用利用线性协变调整的历史数据来提高试验分析的效率而不会产生偏见。具体而言,我们在历史数据上培训预后模型,然后使用线性回归估计治疗效果,同时调整试验受试者预测结果(其预后分数)。我们证明,在某些条件下,这种预后调整程序在大类估算仪中获得了最低差异。当不符合这些条件时,预后的协变量调整仍然比原始协变量调整更有效,并且效率的增益与上述预后模型的预测准确性的衡量标准成正比,与原始协变量的线性关系的预测准确性。我们展示了使用模拟的方法和阿尔茨海默病的临床试验的再分析,并观察平均平均误差的有意义减少和估计方差。最后,我们提供了一种简化的渐近方差公式,使得能够计算这些收益的功率计算。在使用预后模型的预后模型中,可以实现10%和30%的样品尺寸减少。
translated by 谷歌翻译
内核正规化最小二乘(KRLS)是一种流行的方法,用于灵活估算可能在变量之间具有复杂关系的模型。但是,其对许多研究人员的有用性受到限制,原因有两个。首先,现有的方法不灵活,不允许KRL与理论动机的扩展(例如固定效应或非线性结果)结合使用。其次,对于甚至适度尺寸的数据集,估计在计算上是非常强大的。我们的论文通过引入广义KRL(GKRL)来解决这两种问题。我们注意到,可以将KRLS重新构造为层次模型,从而允许轻松推理和模块化模型构建。在计算上,我们还实施随机草图以显着加速估计,同时估计质量的罚款有限。我们证明,GKRL可以在一分钟内进行数万观察到的数据集中。此外,可以迅速估计需要在十二次(例如元学习者)中安装模型的最新技术。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a simple definition for the External Validity (EV) of Interventions and Counterfactuals. The definition leads to EV statistics for individual counterfactuals, and to non-parametric effect estimators for sets of counterfactuals (i.e., for samples). We use this new definition to discuss several issues that have baffled the original counterfactual formulation: out-of-sample validity, reliance on independence assumptions or estimation, concurrent estimation of multiple effects and full-models, bias-variance tradeoffs, statistical power, omitted variables, and connections to current predictive and explaining techniques. Methodologically, the definition also allows us to replace the parametric, and generally ill-posed, estimation problems that followed the counterfactual definition by combinatorial enumeration problems in non-experimental samples. We use this framework to generalize popular supervised, explaining, and causal-effect estimators, improving their performance across three dimensions (External Validity, Unconfoundness and Accuracy) and enabling their use in non-i.i.d. samples. We demonstrate gains over the state-of-the-art in out-of-sample prediction, intervention effect prediction and causal effect estimation tasks. The COVID19 pandemic highlighted the need for learning solutions to provide general predictions in small samples - many times with missing variables. We also demonstrate applications in this pressing problem.
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that 'black-box' rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20 percent more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70 percent of this gain.
translated by 谷歌翻译
了解特定待遇或政策与许多感兴趣领域有关的影响,从政治经济学,营销到医疗保健。在本文中,我们开发了一种非参数算法,用于在合成控制的背景下检测随着时间的流逝的治疗作用。该方法基于许多算法的反事实预测,而不必假设该算法正确捕获模型。我们介绍了一种推论程序来检测治疗效果,并表明测试程序对于固定,β混合过程渐近有效,而无需对所考虑的一组基础算法施加任何限制。我们讨论了平均治疗效果估计的一致性保证,并为提出的方法提供了遗憾的界限。算法类别可能包括随机森林,套索或任何其他机器学习估计器。数值研究和应用说明了该方法的优势。
translated by 谷歌翻译
因果关系是理解世界的科学努力的基本组成部分。不幸的是,在心理学和社会科学中,因果关系仍然是禁忌。由于越来越多的建议采用因果方法进行研究的重要性,我们重新制定了心理学研究方法的典型方法,以使不可避免的因果理论与其余的研究渠道协调。我们提出了一个新的过程,该过程始于从因果发现和机器学习的融合中纳入技术的发展,验证和透明的理论形式规范。然后,我们提出将完全指定的理论模型的复杂性降低到与给定目标假设相关的基本子模型中的方法。从这里,我们确定利息量是否可以从数据中估算出来,如果是的,则建议使用半参数机器学习方法来估计因果关系。总体目标是介绍新的研究管道,该管道可以(a)促进与测试因果理论的愿望兼容的科学询问(b)鼓励我们的理论透明代表作为明确的数学对象,(c)将我们的统计模型绑定到我们的统计模型中该理论的特定属性,因此减少了理论到模型间隙通常引起的规范不足问题,以及(d)产生因果关系和可重复性的结果和估计。通过具有现实世界数据的教学示例来证明该过程,我们以摘要和讨论来结论。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this paper is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
translated by 谷歌翻译
We propose a new method to estimate causal effects from nonexperimental data. Each pair of sample units is first associated with a stochastic 'treatment' - differences in factors between units - and an effect - a resultant outcome difference. It is then proposed that all such pairs can be combined to provide more accurate estimates of causal effects in observational data, provided a statistical model connecting combinatorial properties of treatments to the accuracy and unbiasedness of their effects. The article introduces one such model and a Bayesian approach to combine the $O(n^2)$ pairwise observations typically available in nonexperimnetal data. This also leads to an interpretation of nonexperimental datasets as incomplete, or noisy, versions of ideal factorial experimental designs. This approach to causal effect estimation has several advantages: (1) it expands the number of observations, converting thousands of individuals into millions of observational treatments; (2) starting with treatments closest to the experimental ideal, it identifies noncausal variables that can be ignored in the future, making estimation easier in each subsequent iteration while departing minimally from experiment-like conditions; (3) it recovers individual causal effects in heterogeneous populations. We evaluate the method in simulations and the National Supported Work (NSW) program, an intensively studied program whose effects are known from randomized field experiments. We demonstrate that the proposed approach recovers causal effects in common NSW samples, as well as in arbitrary subpopulations and an order-of-magnitude larger supersample with the entire national program data, outperforming Statistical, Econometrics and Machine Learning estimators in all cases...
translated by 谷歌翻译
我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的背景下,多项式的数量($ n $)的数量比观测值数量($ d_i $)快得多,与节点$ i $的度相对应,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以使统计量在NULL下分配。顺序应用时,该测试也可以用于确定社区数量。该测试在邻接矩阵的压缩版本上进行操作,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了顺序应用中的力量,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。
translated by 谷歌翻译